Chapter 6 - Lecture Worksheet 1 - Answers

A. A sample of solid aluminum is heated with an electrical coil. If $\mathbf{1 8 6}$ Joules of energy are added to a 11.8 gram sample initially at $21.0^{\circ} \mathrm{C}$, what is the final temperature of the aluminum ?

$$
\begin{gathered}
\begin{array}{|c|c|}
\hline \mathrm{q} & 186 \mathrm{~J} \\
\hline \mathrm{~m} & 11.8 \mathrm{~g} \\
\hline \mathrm{C}_{\mathrm{s}} & 0.90 \mathrm{~J} / \mathrm{g}^{0} \\
\hline \mathrm{~T}_{2} & ? \\
\hline \mathrm{~T}_{1} & 21.0^{\circ} \mathrm{C} \\
\hline \Delta \mathrm{~T} & ? \\
\hline \Delta T=\frac{q}{m C_{s}}=\frac{186 \mathrm{~J}}{(11.8 g)\left(0.90 \mathrm{~J} / \mathrm{g}^{\circ}\right)}=\mathbf{1 7 . 5}{ }^{0}=\mathrm{T}_{2}-\mathrm{T}_{1} \\
\mathrm{~T}_{2}=(\mathbf{1 7 . 5}+\mathbf{2 1 . 0})^{\mathbf{0}} \mathrm{C}=\mathbf{3 8 . 5} \mathbf{5}^{0} \mathrm{C}
\end{array} \\
\end{gathered}
$$

B. In the laboratory a student uses a "coffee cup" calorimeter to determine the specific heat of a metal.

She heats 19.0 grams of silver to $99.32^{\circ} \mathrm{C}$ and then drops it into a cup containing 78.6 grams of water at $21.14^{\circ} \mathrm{C}$. She measures the final temperature to be $22.24^{\circ} \mathrm{C}$. Assuming that all of the heat is transferred to the water, she calculates the specific heat of silver to be \qquad $\mathrm{J} / \mathrm{g}^{0} \mathrm{C}$.

$$
\begin{array}{llllll}
\text { (1) } 0.204 & \text { (2) }-0.0144 & \text { (3) }-0.247 & \text { (4) }+0.247 & \text { (5) } 0.0144 & \text { (6) }-0.204
\end{array}
$$

Table your data:

	Water	Silver
m	78.6 g	19.0 g
C_{sp}	$4.184 \mathrm{~J} / \mathrm{g}^{0}$	$?$
$\mathrm{~T}_{2}$	$22.24{ }^{\circ} \mathrm{C}$	$22.24{ }^{\circ} \mathrm{C}$
T_{1}	$21.14^{\circ} \mathrm{C}$	$99.32{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}$	$1.10{ }^{\circ} \mathrm{C}$	$-77.08^{\circ} \mathrm{C}$

$-\mathrm{q}_{\mathrm{Ag}}=\mathrm{q}_{\mathrm{H} 2 \mathrm{O}}+\mathrm{q}_{\text {calorimeter }} \approx \mathrm{q}_{\mathrm{H} 2 \mathrm{O}}$ (assume all heat transferred to water)
$\mathrm{q}_{\mathrm{H} 2 \mathrm{O}}=\mathrm{m}_{\mathrm{H} 2 \mathrm{O}} \operatorname{Csp}\left(\mathrm{H}_{2} \mathrm{O}\right) \Delta \mathrm{T}_{\mathrm{H} 2 \mathrm{O}}=(78.6 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g}^{0}\right)\left(1.10^{0} \mathrm{C}\right)=361.75 \mathrm{~J}$
$\mathrm{q}_{\mathrm{Ag}}=-\mathrm{q}_{\mathrm{H} 2 \mathrm{O}}=-361.75 \mathrm{~J}=\mathrm{m}_{\mathrm{Ag}} \operatorname{Csp}(\mathrm{Ag}) \Delta \mathrm{T}_{\mathrm{Ag}}$
Solve for specific heat of silver:
$\operatorname{Csp}(\mathrm{Ag})={ }_{-\mathrm{q}_{\mathrm{H} 2 \mathrm{O}}} /\left(\mathrm{m}_{\mathrm{Ag}} \Delta \mathrm{T}_{\mathrm{Ag}}\right)=(-361.75 \mathrm{~J}) /(19.0 \mathrm{~g})\left(-77.08^{\circ} \mathrm{C}\right)=+0.247 \mathrm{~J} / \mathrm{g}^{0}$
C. In the General Mills laboratory a nutritionist measured the calorie content of the newest taste sensation, blue cheese pizza. She found that when a 0.567 g sample of homogenized freeze-dried pizza was burned in a bomb calorimeter the temperature increased from $22.73^{\circ} \mathrm{C}$ to $27.35^{\circ} \mathrm{C}$. The calorimeter contained 525.4 g water. The heat capacity of the calorimeter was found in a separate experiment to be $377.3 \mathrm{~J} /{ }^{0} \mathrm{C}$. Calculate the number of food calories (kcal) per slice of pizza where one slice weighs 117 grams.
(1) 2.84 (2) 5.02
(3) 179
(4) 433
(5) 587
(6) 1,190
(7) 11,900

0.567 g pizza	$\mathrm{q}_{\text {pizza }}=-\left(\mathrm{q}_{\text {water }}+\mathrm{q}_{\text {cal }}\right)$
$\mathrm{T}_{2}=27.35^{\circ} \mathrm{C}$	$=-\left(\mathrm{mC}_{\text {sp }}(\right.$ water $\left.)+\mathrm{C}_{\text {cal }}\right) \Delta \mathrm{T}$
$\mathrm{T}_{1}=22.73{ }^{\circ} \mathrm{C}$	$=-\left[(525.4 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g}^{0}\right)+377.3 \mathrm{~J} /{ }^{0}\right]\left(4.62^{\circ} \mathrm{C}\right)$
$\Delta \mathrm{T}=4.62^{\circ} \mathrm{C}$	$=-(2575.6)(4.62) \mathrm{J}$
$\mathrm{m}_{\text {water }}=525.4 \mathrm{~g}$	$=-11,899 \mathrm{~J}(1 \mathrm{cal} / 4.184 \mathrm{~J})(1 \mathrm{kcal} / 1000 \mathrm{cal})=-2.844 \mathrm{kcal}$
$\mathrm{C}_{\text {cal }}=377.3 \mathrm{~J} /{ }^{0}$	
1 slice $=117 \mathrm{~g}$	Calorie content $=(2.844 \mathrm{kcal}) /(0.567 \mathrm{~g})=5.016 \mathrm{kcal} / \mathrm{g}$
$?=$ Cal (kcal)/slice	
	$\begin{gathered} (1 \text { slice })(117 \mathrm{~g} / \text { slice })(5.016 \mathrm{kcal} / \mathrm{g})=587 \mathrm{kcal} \\ =587 \text { Food Calories } \end{gathered}$
	Not a low cal pizza !

