Chem 111

Lecture 17

UMas 🖞 🍐 🍐 🍐 🍐 🗁 🗗 ... 🛓 🖣 🕨 Initiative

Announcements

- Exam 1 grades are up.
- Exam 2 in two weeks.

Homework

- Start Reading Chapter 6
- OWL online homework

Recap

- Enthalpy
- Enthalpy of reactions
- Hess's Law

Let's Practice

Calculate $\triangle H$ for the reaction C(graphite) \rightarrow C (diamonds) \leftarrow Using: C(graphite) + O₂(g) \rightarrow CO₂(g) C(diamond) + O₂(g) \rightarrow CO₂(g) \leftarrow

$$C(graphite) + o_2(q) \rightarrow co_2(q) \qquad AH = -393. SkJ$$

$$Co_2(q) \rightarrow C(dianond) + O_2(q) \qquad AH = 395. 4kJ$$

$$C(graphite) \rightarrow C(dianond) \qquad AH = 1.9kJ$$

Enthalpies of Formation

Great number of enthalpies of reactions of been tabulated.

Enthalpy of Formation: sometime called the heat of formation, ΔH_f , is the enthalpy it takes to form a substances from its elements.

Standard Enthalpy ΔH° : enthalpy change when all reactants and products are in their standard state (pure form at 1 atm and 298 K) Λ 2C(graphite) + $3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(f)$ $\Delta H^{\circ}_f = -277.7kJ$ 0 $O_2(g) \rightarrow O_2(g)$ $\Lambda H^{\circ} = 0 \ kJ$

Let's Practice

 $\Delta H_{f}^{o} kJ/mol$ $\Delta H_{rxn}^{o} = \sum \Delta H_{f}^{o}(\text{products}) - \sum \Delta H_{f}^{o}(\text{reactants})$ $C_3H_8(g)$ -103.85 $CO_2(g)$ -393.5 Calculate the standard enthalpy change for 6 -285.5 $H_2O(I)$ the combustion of 1 mol of benzene, $C_6H_6(I)$ $C_6H_6(I)$ 49.04 $\binom{C_{6}+L_{6}(1)}{2} + \frac{15}{2}O_{2}(q) \rightarrow \frac{C_{02}(q)}{15} + \frac{12}{5} + \frac{1$ $DH_{ryn}^{0} = \begin{pmatrix} 6 & (-393.5 \times 5) + 3 & (-285.5 \times 5) \\ 12 & = 6 \end{pmatrix} - \begin{pmatrix} 49.04 \\ -9.04 \end{pmatrix} + 0 \end{pmatrix}$ = -3267 kJ

Electronic Structure of Atoms

Electromagnetic radiation: Electromagnetic energy is a term used to describe all the different kinds of energies released .

Moves in waves

THE ELECTRO MAGNETIC SPECTRUM

Electronic Structure of Atoms

Wavelength: peak to peak. Symbol = λ . Measured in meters

Frequency: is the number of waves that pass a fixed place in a given amount of time. Symbol = v. Measured in s⁻¹ or 1/s or hertz (Hz)

The speed of light through a vacuum, c, is 3.00×10^8 m/s.

$$\mathbf{c} = \lambda \mathbf{v}$$

Blackbody Radiation

Heating up a piece of metal. Physics could not explain this. Planck \rightarrow Energy can be released (or absorbed) by atoms only in "chunks" of some minimum size. The chunks are called quantums.

Electromagnetic Radiation

E = hvh, Planck's constant = 6.63 x 10⁻³⁴ (Js)

Atoms will absorb release: E = nhvn is a whole number

The Photoelectric Effect

Einstein used Planck's quantum theory to explain the photoelectric effect.

Each energy packet behaves like a tiny packet of light and is called a **photon**.

Let's Practice

What wavelength of radiation has photons of energy 8.23×10^{-19} J?

Emission

Radiation composed of 1 wavelength = *monochromatic* Radiation can be composed of many wavelengths When separated a **spectrum** is produced:

Continuous Spectrum

Neon Sodium Vapor

 $R_h = 1.0974 \times 10^7 \text{ m}^{-1}$

Bohr Model

- "Microscopic solar system"
- Lower the energy (more negative) the more
- The lowest energy state, n = 1, is called the **ground state.**
- When the electron is in a higher state (n=2,3...) the atom is said to be in an **excited state.**

Bohr Model

• Electrons can "jump" from one allowed energy level by emitting/absorbing a photon of light.

 $\Delta E = E_f - E_i = hv$

