Chem 111

Lecture 2

UMas 🖞 🍐 🍐 🍐 🍐 🗁 🗗 ... 🛓 🖣 🕨 Initiative

Announcements

- Supplementary Instructors
- Has anyone sent a question and not heard back after a long time?
- Spark Discussion
- Problems with your computer, take it to the PC software support in LGRC -> Use campus computer centers.
- Slow pitched soft ball

Homework

- Finish Reading Chapter 1
- Read "Let's Review"
- OWL online homework.

Recap

- Chemistry
- Matter

.

• Classification of Matter

Classification of Matter

Pure substance - matter that has fixed composition and distinct properties. *eg* Table Salt, Water, Copper...

- Elements substances that can not be decomposed into a simpler substance. Each element is composed of only one kind of atom.
- **Compounds** are composed of two or more elements, and thus composed of two or more kinds of atoms.

Mixtures – are combinations of two or more substances in which each substance retains its own chemical identity. They have variable composition. *eg air, chocolate chip cookie…*

- **Homogenous mixtures** mixtures that are uniform throughout, sometime called solutions.
- Heterogeneous mixtures do not have the same properties, composition and appearance throughout the mixture.

Properties of Matter

Physical Properties – are properties that we can measure without changing the identity and composition of the substance. eg color, odor, density, melting point, boiling point Density = mass/volume

Chemical Properties – describe the way the substance may react to form another substance. *eg flammability*

Changes in Matter

Physical changes – a substance changes it physical appearance but not its composition.

Chemical changes – a substance is transformed into a chemically different substance. **Chemical reactions**

Measurement

Quantities are important.

VM

NM

Meaning

Mrs arty 106 (million)

10⁹ (billion)

10³ (thousand)

 10^{-2} (one hundredth)

 10^{-3} (one thousandth)

 10^{-6} (one millionth)

 10^{-9} (one billionth)

 10^{-1} (tenth)

 10^{-12}

 10^{-15}

Abbreviation

G

d

C

n

p

f

Let's Review, Table 2, p. 26 Selected Prefixes Used in the Metric System Example Dre measuremen) 1 gigahertz = 1×10^9 Hz 1 megaton = 1×10^6 tons 1 kilogram (kg) = 1×10^3 g 1 decimeter (dm) = 1×10^{-1} m 1 centimeter (cm) = 1 imes 10⁻² m 1 millimeter (mm) = 1×10^{-3} m 1 micrometer (μ m) = 1 \times 10⁻⁶ m 1 nanometer (nm) = 1×10^{-9} m 1 picometer (pm) = 1×10^{-12} m

1 femtometer (fm) = 1×10^{-15} m

@ Brooks/Cole, Cengage Learning

TABLE 2

Prefix

giga-

mega-

kilo-

deci-

centi-

milli-

micro-

nano-

pico-

femto-

Measurement

Quantities are important.

1.8 m

0.1 nm

Systeme International d'Unites

TABLE 1 Some SI Base Units

Measured Property	Name of Unit	Abbreviation	
Mass	kilogram	kg) \.	ras aram
Length	meter	m	C_0
Time	second	s D	second
Temperature	kelvin	К	
Amount of substance	mole	mol	
Electric current	ampere	A	
® Brooks/Cole, Cengage Learning VIIVNE = L	wxlxh=m	$x m \times M = m^3$'s Review, Table 1, p. 25
	11 = 1000 m	$L = 1000 \text{cm}^3 =$	Idm3
Memorize,	$Density = \frac{ma}{va}$	ss = Gr Tune = 2	
			11

Precision v Accuracy

Precision gauges how closely individual measurements agree with one another.

Accuracy refers to how closely individual measurements agree with the correct, or "true" value.

$precent\ error = \frac{error\ in\ measurement}{accepted\ or\ 'true'value}\ x\ 100\%$

Standard Deviation

$$s = \sqrt{\frac{\sum_i (x_i - \bar{x})^2}{n-1}}$$

Scientific Notation

Sometimes called exponential notation, is a way of writing numbers that accommodates values too large or small to be conveniently written in decimal notation.

Expressed as a product: N x 10^y

Decimal:

SN:

Calculators, Excel, OWL, Computer etc... PAGE 34

Significant Figures

Indicates the exactness of a measurement

The number of digits that can be justified by the data.

Guidelines

- Nonzero = significant. 963, 2.9
- Zeros between nonzeros = significant. 1006, 1.03
- Leading zeros not significant. 0.002, 0046
- Trailing zeros after decimal = significant 3.0, 0.0200
- Trailing zeros with no decimal are ambiguous →use scientific notation

•Exact numbers have infinite significant figures.

Sig Figs In Calculations

The precision of the result is the precision of the measurement.

Adding/Subtracting – the result cannot have more digits to the right of the decimal point than any of the original number. Fewest Decimal Places

92.1 1.209 <u>45</u> 138.309

Sig. Figs. In Calculations

The precision of the result is the precision of the measurement.

Dividing/Multiplying – the result must be reported with the same number of significant figures as the measurement with the fewest significant figures. **Fewest Significant Figures.**

7.273 1.20 <u>1.5124421</u> 13.19998967196 →13.2

