Chem 111

Lecture 21

UMas 🖞 🍐 🍐 🍐 🍐 🗁 🗗 ... 🛓 🖣 🕨 Initiative

Announcements

- Exam 2, Nov 1
 →Pencils, Erasers, Calculator, ID card
- Practice Exams: <u>http://courses.umass.edu/chem111-bbotch/ExamInfo.html</u>
- Breanne has a recitation session HASA 126 10/27 (5-6pm)
- SI session schedule is posted on website
- Sunday 4 6 PM, ISB 135, Prof. Tyson

Exam Equation Sheet $N_A = 6.022 \times 10^{23}$ $\Delta U = q + w$

$$q = mC_{sp} \Delta T \rightarrow q = (cal \Delta T)$$

$$C_{sp} (water) = 4.184 \frac{J}{g^{\circ}C}$$

1 ml water weighs 1 g

h = 6.626 x 10^{-34} Js c = 2.998 x $10^8 \frac{m}{s}$ R_H = 1.097 x 10^7 m⁻¹ 1 Hz = 1 s⁻¹

1 cal = 4.184 J

Sheel

$$\Delta U = q + w$$

 $w = -P\Delta V$

 $\Delta H = \Delta U + P \Delta V$ reactions at constant pressure

 $\Delta H_{rxn}^{0} = \Sigma \Delta H_{f}^{0}$ (products) - $\Sigma \Delta H_{f}^{0}$ (reactants)

$$E_{n} = -\frac{R_{H}hc}{n^{2}}$$

$$\Delta E = -R_{H}hc\left(\frac{1}{n_{f}^{2}} - \frac{1}{n_{l}^{2}}\right)$$

$$C = \lambda v$$

$$E = hv$$

$$A = \frac{h}{mv}$$

= 0

+ 63

Exam

- Chapter 3: Redox Reaction and Oxidations States (3.9-end)
- Chapter 4: Limiting reactant problem
- Chapter 5: Everything
- Chapter 6: Everything except Dia/Paramagnetism
- Expected to manipulate them
- Know what the variable mean
- Calorimeter/Phase change
- Concept equations
- Need to know concepts from earlier chapters (balance, prefixes n, p, M, k... etC)

Homework

- Finish Reading Chapter 6
- Owl (homework that is due on Sunday you can do now and will be on the test)

Recap

- Wave-Particle Duality <
- Uncertainly Principle

Let's Practice

What are the possible values of ℓ if n = 3? What is the subshell designation (s,p,d,etc...) of each? What are the possible values of $m_{\ell}?n=2$ l=1 = 20n=3, l=2 = 3d $M_{\ell} = -L \dots U \dots + l$ n=3 $l = 0, l \dots n - l$ 55 mr D=0 -1, 0, 19 35 -2,-1,0,1,2 d 1 = 3

Oribitals of same energy level are said to be degenerate.

Quantum Numbers

• The shell with principle quantum number n will consist of exactly n subshells. n=3l=0, 1, 2 or s, p, d l=0, 1, 2, 3• For a given value of l, there are 2l+1 values of m_l . l=2 $M_l=2, 1, 0, -1, -2$ Sstal 2(2)+1=5• The total number of orbitals in a shell is n^2 N=(2) - 1 or b, t=1

Spin

- s = intrinsic angular spin.
- For an electron s=1/2 always
- m_s = magnetic spin q#
- For and electron $m_s = +1/2$ or -1/2 $\frac{1}{2} \uparrow \sqrt{\frac{1}{2}}$

The for q# n, l, m_I, m_s are used to characterize a electron in an atom

Let's Practice Day

- Friday I am going to do a whole bunch of practice problems
- If there is something you want me to go over, email me

Electron Configuration

- The way in which electrons are distributed among the various orbitals of an atom is called its electron configuration.
- The most stable, or ground state, electron configuration of an atom is that in which the electrons are in the lowest possible energy state.

Helium

 Pauli exclusion principle states that no two electrons in an atom can have the same set of four qauntum numbers (n, l, m_l, m_s)

Helium

Е	$\frac{\overline{3s}}{2s} \frac{\overline{3p}}{2p} \frac{\overline{3p}}{2p}$	<u>3d</u>
	<u>1s</u>	

 An orbital can hold a maximum of two electrons and they must have opposite spins

Effective nuclear charge

•
$$Z_{eff} = Z - \sigma$$

• σ : Is the shielding constant

Figure 1-14 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D.F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

ns<np<nd<nf

If you are more math inclined

• Electrons are assigned to subshells in the order of increasing " $n + \ell$ " value.

 If two subshells with same $n + \ell$ " value electrons are assigned to the subshell of lower n.

Hund's Rule: for degenerate orbitals, the lowest energy is attained when the number of electrons wit the same spin is maximized.

Let's Practice

Draw the orbital diagram representation for the electron configuration of oxygen. What is its electron configuration?

