Chem 111

Lecture 23

Announcements

• Exam 2 Take Home

Found:

http://people.chem.umass.edu/cjoseph/chem111/

You may turn it early

Can grab a Scantron

Use any written resource or students in class.

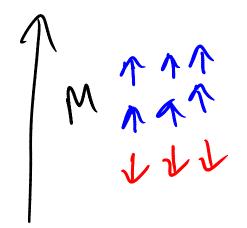
You may **NOT** use SI's, Instructors, TA's or ANY OTHER person outside of class, including "web tutors".

Homework

- Start Reading Chapter 7
- Owl Homework

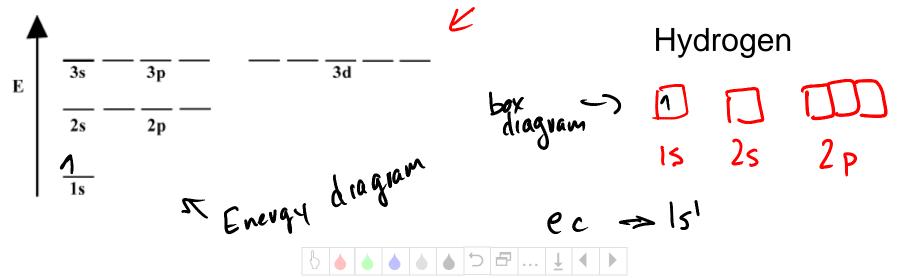
Recap

- Quantum numbers

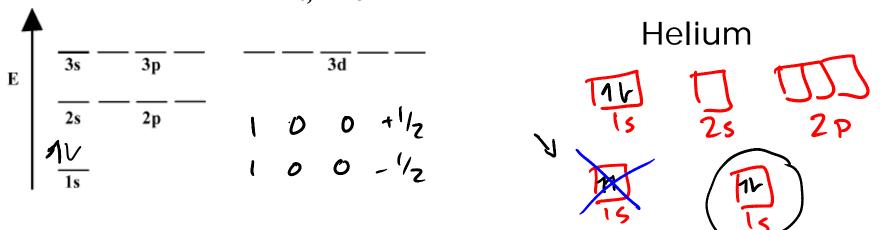

Degenerate

• Spin

Me= Ms=



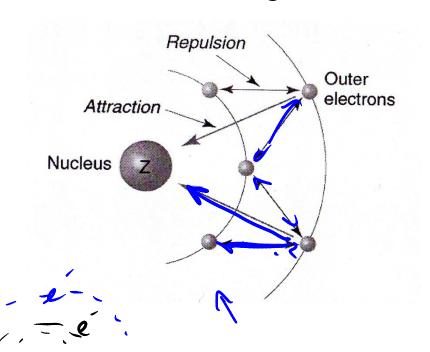
Electron Configuration


H₂

- The way in which electrons are distributed among the various orbitals of an atom is called its **electron** configuration.
- The most stable, or ground state, electron configuration of an atom is that in which the electrons are in the lowest possible energy state.

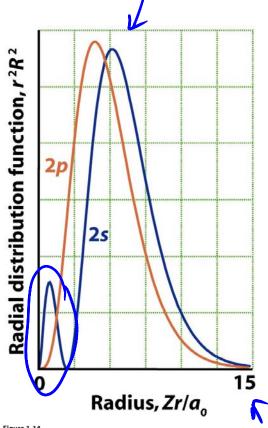
Helium

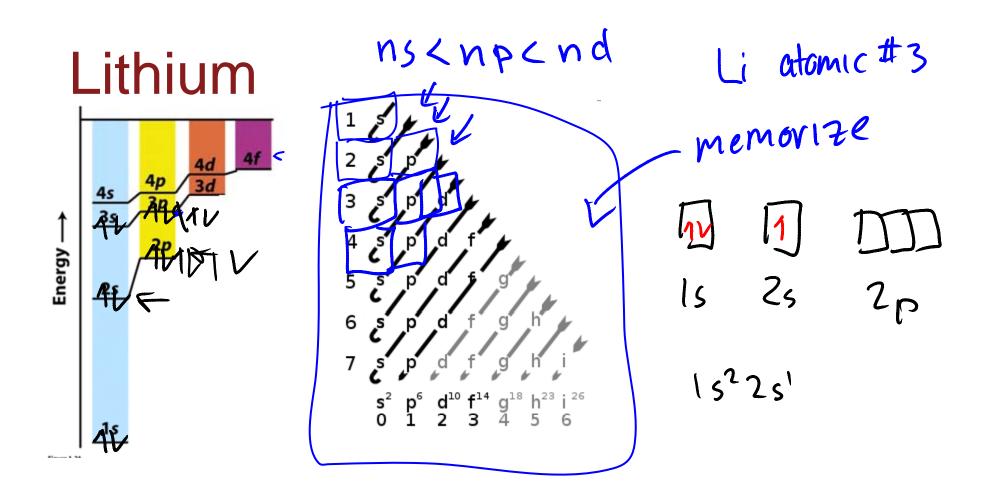
 Pauli exclusion principle states that no two electrons in an atom can have the same set of four qauntum numbers (n, ℓ, m_ℓ, m_s)


 An orbital can hold a maximum of two electrons and they must have opposite spins

Effective nuclear charge

- $Z_{eff} = Z \sigma$
- σ : Is the shielding constant

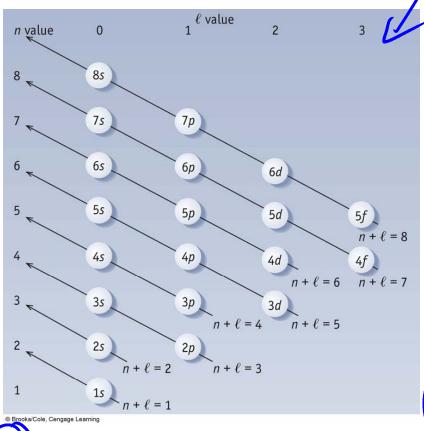



Figure 1-14

Shriver & Atkins Inorganic Chemistry, Fourth Edition

2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

ns<np<nd<nf



→ 13-> 25->2p->3s->3p->4s->3d->4p

If you are more math inclined

• Electrons are assigned to subshells in the order of increasing "n+ ℓ " value.

• If two subshells with same n+ℓ" value electrons are assigned to the subshell of lower n.

$$||S| = ||N + L|| = || + 0| = 1$$

$$||S| = ||N + L|| = || + 0| = 1$$

$$||S| = ||N + L|| = || + 0| = 1$$

$$||S| = ||N + L|| = || + 0| = 1$$

$$||S| = ||N + L|| = || + 0| = 1$$

$$||S| = ||N + L|| = || + 1| = 2 + 0 = 2$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

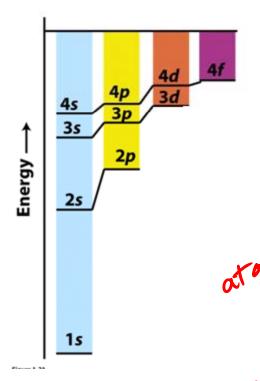
$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

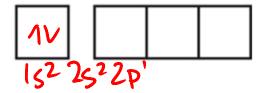
$$||S| = ||N + L|| = || + 1| = 3$$

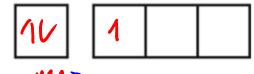

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||N + L|| = || + 1| = 3$$

$$||S| = ||S| = ||$$

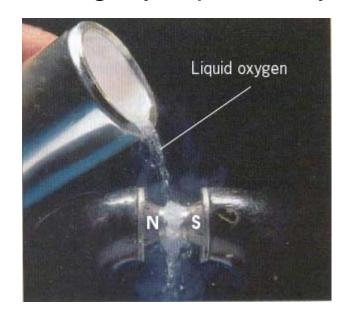

Carbon

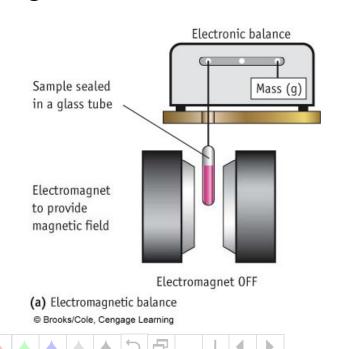

132 252 282 132 132 184 284

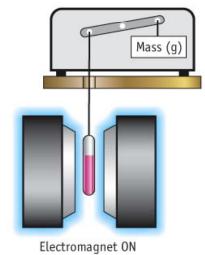
Hund's Rule: for degenerate orbitals, the lowest energy is attained when the number of electrons with the same spin is maximized. $15^2 25^2$

料

Let's Practice

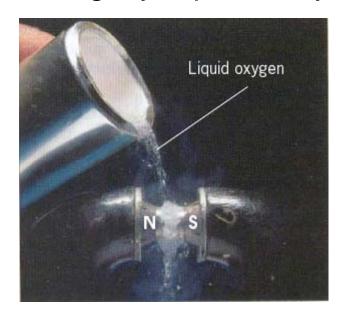

Draw the orbital diagram representation for the electron configuration of oxygen. What is its electron configuration?

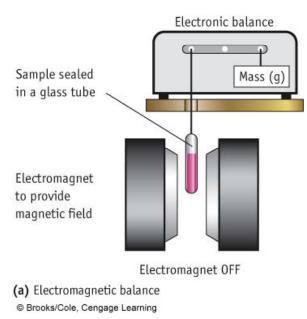



Magnetism

Paramagnetism: is caused by the presence of at least one unpaired electron orbital (i.e., an unpaired spin) in the atoms, molecules, or ions. Attracted to magnets.

Diamagnetism: is caused when all electrons are paired. Slightly repulsed by magnets.

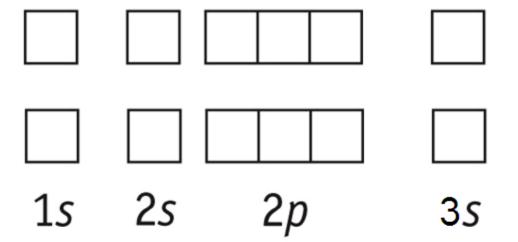




Magnetism

Paramagnetism: is caused by the presence of at least one unpaired electron orbital (i.e., an unpaired spin) in the atoms, molecules, or ions. Attracted to magnets.

Diamagnetism: is caused when all electrons are paired. Slightly repulsed by magnets.



Neon & Sodium

Valence Electrons: the outer shell electrons

Core Electrons: the inner shell electrons

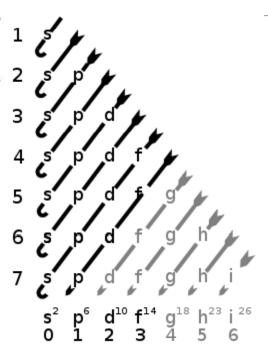
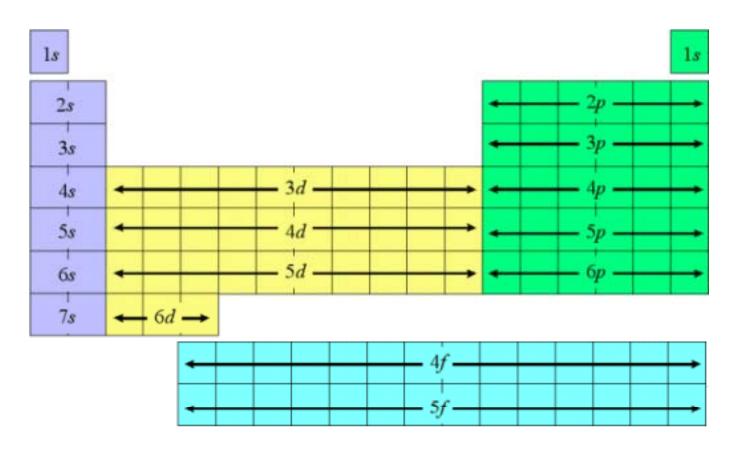

D-block

TABLE 7.4 Orbital Box Diagrams for the Elements Ca Through Zn

		3 <i>d</i>	4s
Са	[Ar]4s ²		$\uparrow\downarrow$
Sc	$[\mathrm{Ar}]3d^14s^2$	\uparrow	$\uparrow\downarrow$
Ti	$[Ar]3d^24s^2$	$\uparrow \uparrow \uparrow$	$\uparrow\downarrow$
٧	$[Ar]3d^34s^2$	$\uparrow \uparrow \uparrow \uparrow \downarrow$	ightharpoons
Cr*	$[Ar]3d^54s^1$	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	ightharpoons
Mn	$[Ar]3d^54s^2$	$\boxed{\uparrow \uparrow \uparrow \uparrow \uparrow}$	$\uparrow\downarrow$
Fe	$[Ar]3d^64s^2$	$[\uparrow\downarrow]\uparrow \uparrow \uparrow \uparrow$	$\uparrow\downarrow$
Co	$[Ar]3d^{7}4s^{2}$	$[\uparrow\downarrow]\uparrow\downarrow]\uparrow[\uparrow]$	$\uparrow\downarrow$
Ni	[Ar]3d84s2	$[\!\![\!\![\![\uparrow]\!\!]\!]\!]\!\![\![\![\uparrow]\!\!]\!]\!]$	$\uparrow\downarrow$
Cu*	$[Ar]3d^{10}4s^{1}$	$\boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1}$	\uparrow
Zn	$[Ar]3d^{10}4s^2$	$\boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1}$	$\uparrow\downarrow$

^{*}These configurations do not follow the " $n+\ell$ " rule.


[@] Brooks/Cole, Cengage Learning

Heavy Elements

Element	Z	Electron Configuration	Element	Z	Electron Configuration	E	lement	Z	Electron Configuration
			Lanthanum	57	[Xe] 6s ² 5d ¹	Α	ctinium	89	[Rn] 7s ² 6d ¹
			Cerium	58	[Xe] 6s ² 4f ¹ 5d ¹	Т	horium	90	[Rn] 7s ² 6d ²
			Praseodymium	59	[Xe] 6s ² 4f ³	Р	rotactinium	91	[Rn] 7s ² 5f ² 6d ¹
			Neodymium	60	[Xe] 6s ² 4f ⁴	U	ranium	92	[Rn] 7s ² 5f ³ 6d ¹
			Promethium	61	[Xe] 6s ² 4f ⁵	N	eptunium	93	[Rn] 7s ² 5f ⁴ 6d ¹
			Samarium	62	[Xe] 6s ² 4f ⁶	Р	lutonium	94	[Rn] 7s ² 5f ⁸
			Europium	63	[Xe] 6s ² 4f ⁷	Α	mericium	95	[Rn] 7s ² 5f ⁷
			Gadolinium	64	[Xe] 6s ² 4f ⁷ 5d ¹	С	urium	96	[Rn] 7s ² 5f ⁷ 6d ¹
			Terbium	65	[Xe] 6s ² 4f ⁹	В	erkelium	97	[Rn] 7s ² 5f ⁹
Yttrium	39	[Kr] 5s ² 4d ¹	Lutetium	71	[Xe] 6s ² 4f ¹⁴ 5d ¹	La	awrencium	103	[Rn] 7s ² 5f ¹⁴ 7p ¹
Zirconium	40	[Kr] 5s ² 4d ²	Hafnium	72	[Xe] 6s ² 4f ¹⁴ 5d ²	R	utherfordium	104	(unknown)
Niobium	41	[Kr] 5s ¹ 4d ⁴	Tantalum	73	[Xe] 6s ² 4f ¹⁴ 5d ³				
Molybdenum	42	[Kr] 5s ¹ 4d ⁵	Tungsten	74	[Xe] 6s ² 4f ¹⁴ 5d ⁴				
Technetium	43	[Kr] 5s ² 4d ⁵	Rhenium	75	[Xe] 6s ² 4f ¹⁴ 5d ⁵				
Ruthenium	44	[Kr] 5s ¹ 4d ⁷	Osmium	76	[Xe] 6s ² 4f ¹⁴ 5d ⁶				
Rhodium	45	[Kr] 5s ¹ 4d ⁸	Iridium	77	[Xe] 6s ² 4f ¹⁴ 5d ⁷				
Palladium	46	[Kr] 4d ¹⁰	Platinum	78	[Xe] 6s ¹ 4f ¹⁴ 5d ⁹				
Silver	47	[Kr] 5s ¹ 4d ¹⁰	Gold	79	[Xe] 6s ¹ 4f ¹⁴ 5d ¹⁰				
Cadmium	48	[Kr] 5s ² 4d ¹⁰	Mercury	80	[Xe] 6s ² 4f ¹⁴ 5d ¹⁰				
Indium	49	[Kr] 5s ² 4d ¹⁰ 5p ¹	Thallium	81	[Xe] 6s ² 4f ¹⁴ 5d ¹⁰ 6p ¹				

Periodic Table... again

Let's Practice

What is the characteristic outer shell electron configuration of the group 7A elements, the halogens?

