Chem 111

Lecture 28

UMas 🖞 🍐 🍐 🍐 🍐 🗁 🗗 ... 🛓 🖣 🕨 Initiative

Announcement

- Recitation session, Wednesday 11/17 at HASA 126 (5-6pm).
- There will class Wednesday, before T-day
- Delay on lecture notes going up

Experience a NEW way of teaching science

"Bhopal Disaster: A Case Study"

An Exciting Workshop Presented by iCons Faculty

 WHO: Majors from College of Natural Science and College of Engineering
 WHEN: Thursday, Nov. 18 6:30-8:00 PM OR
 Tuesday, Nov. 23 6:30 – 8:00 PM
 WHY: Because YOU can make a difference

Integrated Concentration in Science

> Free Pizza

Space is limited!

Register Now by Email:

icons@cns.umass.edu

Homework

- Continue Reading Chapter 8
- Owl Homework

Recap

- Trends in lons -> talce e smaller put e - big
- Bonding <
- Lewis Structures < valence
- Covalent Bonds $\leftarrow H H : F Fe$:

Multiple Bonds

Single bond – refers to a pair of electrons being shared in a single covalent bond.

Double bond – refers to 2 electron pair being shared, two lines are drawn to represent a double bond:

 $: 0 + : 0 \rightarrow : 0 : 0 \circ 0 = 0$

Triple Bond – corresponds to the sharing of three pairs of electrons.

PAGE – 353 ←

- 1. Determine the TOTAL number of valence electrons.
- \rightarrow Use the periodic table to help you.
- → If it is an anion, remember the extra electrons go in the valence shell. So add X electron for a X- charge
- → If it is a cation, remember the electrons are removed from the valence shell. So take away X electrons for a X+ charge.

CFy F-C-F

- → In general, chemical formulas help depict connectivity. HCN
- \rightarrow The central atom is usually written first.
- \rightarrow C, N, P, S tend to be central atoms. \leftarrow +rend μ
- \rightarrow Halogens are often terminal (except when connected to O)
- → Hydrogen will often be terminal. ← -++

$$PO_{4}^{3} - 3\lambda e^{-} CO_{2} lbe^{-}$$

$$O_{-} l O_{-} C^{-} O$$

$$O_{-} l O_{-} C^{-} O$$

$$O_{-} l O_{-} C^{-} O$$

- 3. Complete the octets of atoms bonded to the central atom.
- → Remember hydrogen only need two electrons
- → Count the electron you used, if you have more place them on the central atom, even if it breaks the octet.

4. If you used too many electrons, try multiple bonds.

- \rightarrow Multiple bonds are usually on the central atom
- \rightarrow Change the lone pairs on terminal atoms to multiple bonds.

Let's Practice

Draw the Lewis Structure for phosphorus trichloride, PCl₃.

Let's Practice

Draw the Lewis Structure for HCN.

Let's Practice

Draw the Lewis Structure for the BrO anoion.

Some Tips Practice <---

Isoelectronic Species

Same number of valence electronics.

10 e⁻

Formal Charge

A form of bookkeeping, used to determine charge assigned to an atom in a molecule.

The formal charge of an atom equals the number of valence electrons in the isolated atom, minus the number of assigned to the atom in the Lewis Structure.

- 1. All of the unshared (non-bonding) electrons are assigned to the atom on which they are found.
- 2. Half of the bonding electrons are assigned to each atom in the bond.

FC = Group Number – [Lone Pair $e^- + \frac{1}{2}$ Bond Pair e^-]

Formal Charge

FC = Group Number – [Lone Pair e⁻ + ¹/₂ Bond Pair e⁻]

[:C≡N:]⁻

Some of the formal charges will equal will equal the overall charge of the molecule.

When several Lewis structures are possible, the more stable ones are the ones that bear the smallest formal charges.

Resonance Structure

Consider O₃

Real structure is the average of the two:

Resonance Structure

Which is predicted to have a shorter sulfur-oxygen bonds, SO_3 or SO_3^{2-}

Resonance Structure

Which is predicted to have a shorter sulfur-oxygen bonds, SO_3 or SO_3^{2-}

Odd Number of Electrons

Some stable molecules such as CIO_2 , NO and NO_2 have and odd number of electrons.

Less than an Octet

Rare case found in mainly boron, aluminum and beryllium compounds.

More than an Octet

Only happen with molecules where n =3 or greater

@ Brooks/Cole, Cengage Learning

