Chem 111

Lecture 29

Announcement

• None

Experience a NEW way of teaching science

"Bhopal Disaster: A Case Study"

An Exciting Workshop Presented by iCons Faculty

WHO: Majors from College of Natural Science and College of Engineering WHEN: Thursday, Nov. 18 6:30-8:00 PM OR Tuesday, Nov. 23 6:30 – 8:00 PM WHY: Because YOU can make a difference

Integrated Concentration in Science

Space is limited!

Register Now by Email:

<u>icons@cns.umass.edu</u> <

UMas \bigcirc \blacklozenge \blacklozenge \blacklozenge \blacklozenge \blacklozenge \checkmark \checkmark \bigcirc \boxdot \boxdot \bigcirc Initiative

Homework

- Continue Reading Chapter 8 —
- Owl Homework

Recap A-A A=A

- Multiple Bonds < A=A
- Lewis Structures

Formal Charge

A form of bookkeeping, used to determine charge assigned to an atom in a molecule.

The formal charge of an atom equals the number of valence electrons in the isolated atom, minus the number of assigned to the atom in the Lewis Structure.

d

- 1. All of the unshared (non-bonding) electrons are assigned to the atom on which they are found.
- 2. Half of the bonding electrons are assigned to each atom in the bond. A = A

FC = Group Number – [Lone Pair e⁻ + ¹/₂ Bond Pair e⁻]

When several Lewis structures are possible, the more stable ones are the ones that bear the smallest formal charges.

Resonance Structure

Which is predicted to have a shorter sulfur-oxygen bonds, (SO_3) or SO_3^{2-}

Odd Number of Electrons

Some stable molecules such as CIO_2 , NO and NO_2 have and odd number of electrons.

Less than an Octet

Rare case found in mainly boron, aluminum and beryllium

compounds.

More than an Octet

Only happen with molecules where n =3 or greater

by perivalence

VSEPR (valence shell electron pair repulsion)

Molecular Geometry – is the arrangement of atoms in space.

Number of electron regions	Arrangement
2	Linear
3	Trigonal planar
4	Tetrahedral
5	Trigonal bipyramidal
6	Octahedral

- Basic Tenants
 - 1. Regions of high electron density - bp(s) + lp(s) take up positions as far apart as possible.
 - 2. Molecular shape is determined by the resulting atomic positions
 - 3. lone pairs take up more space than bond pairs

Shapes Linear

AX₂ Example: BeF₂

Trigonal Planar

AX₃ Example: BF₃

Shapes

Tetrahedral

AX₄ Example: CF₄

Shapes

Trigonal bipyramidal

ShapesOctahedral

AX₆ Example: SF₆

Lone Pair Geometry

 Lone pairs of electrons on the central atom occupy spatial positions.

L.P.– L.P.> Lone Pair Bonding Pair > B.P. – B.P.

VSEPR

VSEPR Geometries							
Steric	Basic Geometry	1 lone pair	2 lone pairs	3 lone pairs	4 lone pairs		
No.	0 lone pair	~					
2	180°						
	x <u> </u>						
	Linear						
3	X X X X X X	x < <u>E</u> × <120°					
	Trigonal Planar	Bent or Angular					
4	XIIIII.E 109° X X		X E X << 109°				
-	Tetranedrai	Trigonal Pyramid	Dent of Angular				
5	120° E X X X X X X X	< 90° X X < 120° E X X Sawhorze or Sector	* IIIIIIIIIIEEEX				
	V	Y	••	Y	v		
6							
	Octahedral	Square Pyramid	Square Planar	T-shape	Linear		

Molecular Geometry

- 1. Sketch the Lewis Structure.
- 2. Count the total number of electron pairs around the central atom (bonding and non-bonding) = steric number
- 3. Arrange electron pairs (bonding and non-bonding) on the central atom such that it minimizes electron pair replusion
- 4. Describe what shape you got.
- ** A double or triple bond is counted as one bonding pair when predicting geometry.

** Molecules with more than one "central atom" work the same way.

Let's Practice

Using VSEPR model, predict the molecular geometry of (a)SF₄ and IF_5

Electronegativity

- The power of an atom to attract electrons when it is part of a compound
- Mulliken $\chi_m = 1/2 (I + E_a)$

