Chem 111

Lecture 30

Announcement

- Class Next Wednesday
- Exam 3, Dec 6

Homework

- Finish Reading Chapter 8
- Owl Homework

Recap

Formal Charge.

• Resonance Structures.

• Exceptions to the octet.

VSEPR (valence shell electron pair repulsion)

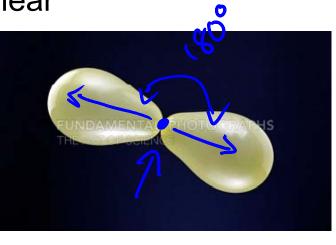
Molecular Geometry – is the arrangement of atoms in space.

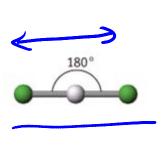
Number of electron regions	Arrangement /
2 3	Linear Trigonal planar
4	Tetrahedral
5	Trigonal bipyramidal
6	Octahedral

Basic Tenants ___

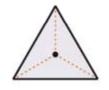
 1. Regions of high electron density - bp(s) + lp(s) take up positions as far apart as possible.

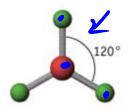
A


 2. Molecular shape is determined by the resulting atomic positions


3. lone pairs take up more space than bond pairs

Linear

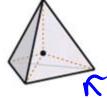

AX2
BF3
BC13

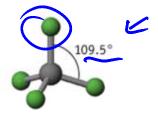

AX₂ Example: BeF₂

Trigonal Planar

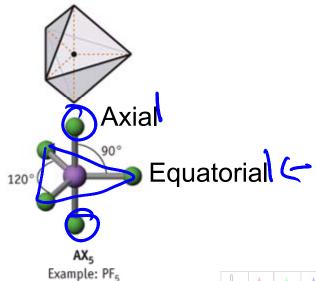


AX₃ Example: BF₃

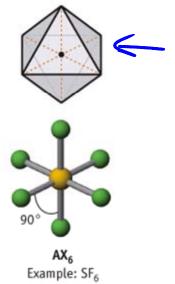

1:4


Tetrahedral

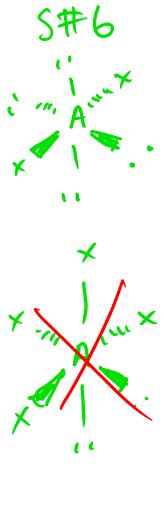
AX₄ Example: CF₄


1:5

Trigonal bipyramidal


1:6

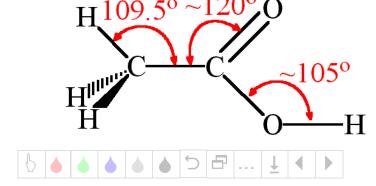
Octahedral


Lone Pair Geometry

 Lone pairs of electrons on the central atom occupy spatial positions.

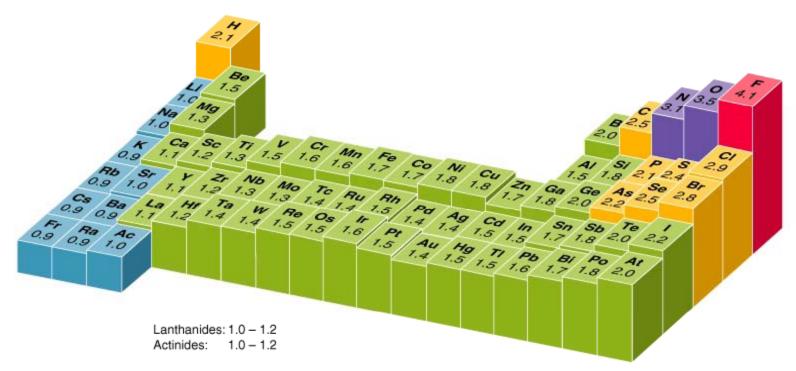
L.P.– L.P.> Lone Pair Bonding Pair > B.P. – B.P. **Tetrahedral** Trigonal pyramidal Bent 104.5° 107.5° 109.5° Water, H₂0 Methane, CH4 Ammonia, NH₃ 4 bond pairs 3 bond pairs 2 bond pairs no lone pairs 1 lone pair 2 lone pairs 4-C-H 10

VSEPR

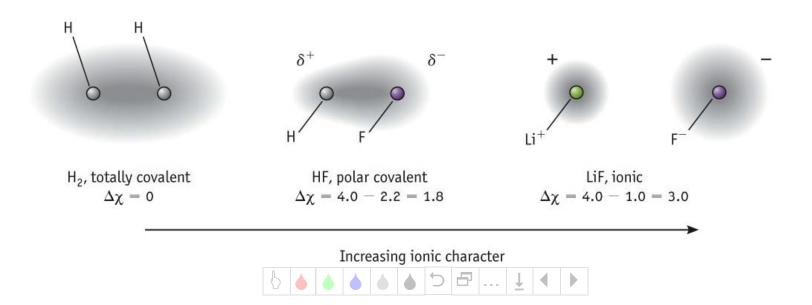

VSEPR Geometries											
Steric No.	Basic Geometry 0 Ione pair	1 Ione pair	2 Ione pairs	3 lone pairs	4 lone pairs						
2	X—E—X										
3	X E 120° X Trigonal Planar	E X < 120° Bent or Angular									
40	X/IIIIE 109° X Tetrahedral	XIII E X 109° Trigonal Pyramid	X E X << 109° Bent or Angular	- 4							
5	X 120° E X X Trigonal Bipyramid	< 90° X XX < 120° X Sawhorse of Seesaw	T-shape	X 180° X Linear							
6	X/////X 90° X/////X X X X Octahedral	X Y Y Y Square Pyramid	Square Planar	X X X X X X T-shape	X 180°						

Molecular Geometry

- 1. Sketch the Lewis Structure.
- 2. Count the total number of electron pairs around the central atom (bonding and non-bonding) = steric number
- 3. Arrange electron pairs (bonding and non-bonding) on the central atom such that it minimizes electron pair replusion
- 4. Describe what shape you got.
- ** A double or triple bond is counted as one bonding pair when predicting geometry.
- ** Molecules with more than one "central atom" work the same way.


Let's Practice

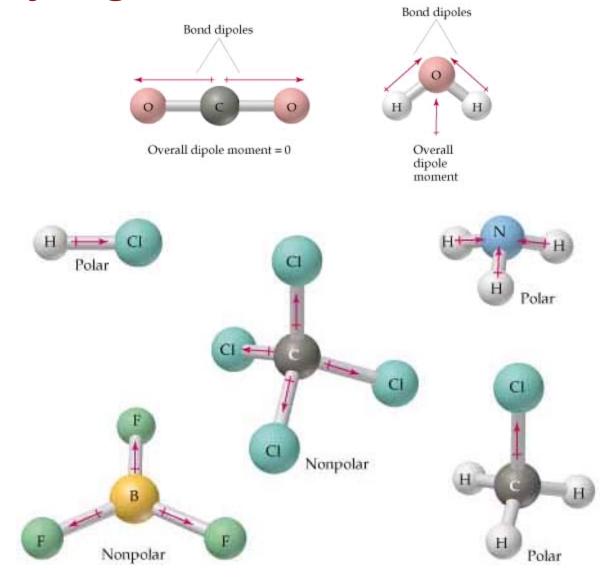
Using VSEPR model, predict the molecular geometry of SF₄ and IF₅.


Electronegativity

- The power of an atom to attract electrons when it is part of a compound
- Mulliken $\chi_{\rm m}$ = 1/2 (I + E_a)

Bond Polarity

- Bond Polarity is the separation of charge leading to a molecule to have a dipole moment
- We can use the difference in electronegativity between two atoms to gauge the polarity of the bond.



Polar Molecules

- Align themselves in an electrical field, including other ions.
- Negative ends attracted positive ends and visa-versa
- A **Dipole** is established when two electrical charges of equal magnitude but opposite sign are separated by distance.
- The size of a dipole is measured by its dipole moment, μ
 measured in debyes(D).

Identifying Polar Molecules

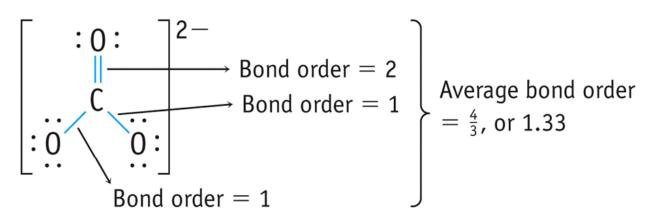
Electroneutrality

Formal charges

Resonance structures

Bond Order

Bond order - is the number of bonding electron pairs shared by two atoms.


Tentative way (using Lewis structures)-

Bond order = $1 \rightarrow \text{single bond}$

Bond order = $2 \rightarrow$ double bond

Bond order = $3 \rightarrow \text{triple bond}$

 $Bond\ Order = \frac{number\ of\ shared\ pairs\ in\ all\ X-Y\ bonds}{number\ of\ X-Y\ links\ invovled\ in\ resonance}$

Bond Length

Single Bond > Double Bond > Triple Bond

Bond length is related to the atoms involved in the bond.

	Single Bond Lengths											
	Group											
	1A	4A	5A	6A	7A	4A	5A	6A	7A	7A	7 A	
	Н	С	N	0	F	Si	Р	S	Cl	Br	Ι	
Н	74	110	98	94	92	145	138	132	127	142	16	
С		154	147	143	141	194	187	181	176	191	21	
N			140	136	134	187	180	174	169	184	20	
0				132	130	183	176	170	165	180	199	
F					128	181	174	168	163	178	197	
Si						234	227	221	216	231	25	
P							220	214	209	224	24	
S								208	203	218	23	
Cl									200	213	23	
Br										228	24	
[26	

Bond Dissociation Enthalpy

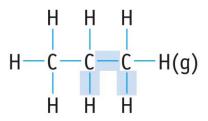
```
H_3C-CH_3(g) \rightarrow H_3C^{\cdot}(g) + H_3C^{\cdot}(g) \Delta_rH= +386 kJ/mol H_2C=CH_2(g) \rightarrow H_2C:(g) + H_2C:(g) \Delta_rH= +682 kJ/mol \Delta_rH= +962 kJ/mol \Delta_rH= +962 kJ/mol
```

Single Bond < Double Bond < Triple Bond

TABLE 8.9 Some Average Bond Dissociation Enthalpies (kJ/mol)*

Single Bonds

	Single bolius														
	Н	C	N	0	F	Si	P	S	Cl	Br	I				
Н	436	413	391	463	565	328	322	347	432	366	299	Multiple Bonds			
C		346	305	358	485	-	-	272	339	285	213	N=N	418	c=c	610
N			163	201	283	_	_	_	192	_	-	$N \equiv N$	945	c≡c	835
0				146	_	452	335	_	218	201	201	c=N	615	c=0	745
F					155	565	490	284	253	249	278	C≡N	887	c≡0	1046
Si						222	_	293	381	310	234	0=0 (in O ₂)	498		
Р							201	-	326	-	184				
S								226	255	-	_				
Cl									242	216	208				
Br										193	175				
I											151				
						43									


Bond Dissociation Enthaply

 $\Delta_r H = \Sigma \Delta H(bonds broken) - \Sigma \Delta H(bonds formed)$

$$CH_3CHCH_2(g) + H_2(g) \rightarrow CH_3CH_2CH_3(g)$$

$$H H H H$$
 $H - C - C = C - H(g) + H - H(g)$
 H

O Brokestine Compage Lauring

