Chem 111

Lecture 31

UMas 🖞 🔺 📥 📥 🖕 🗁 🗗 🛓 🖣 🕨 Initiative

Announcement

• Still have office hours today.

Homework

- Finish Reading Chapter 8
- Owl Homework

Recap • VSEPR A-A $AX_2 \rightarrow X - A - X$ $A - A AX_2 \rightarrow A - X$

 \leftarrow

eq

♦ ⊅ ⊡ ... ↓ ◀

- No Lone Pairs 🧹
- 5 axial v equatorial
- Lone Pairs

octa

Position of Lone Pairs

Molecular Geometry $FC = G^{\#} - (I_{P}e^{-} - \frac{1}{2}be)$

- 1. Sketch the Lewis Structure.
- Count the total number of electron pairs around the central atom (bonding and non-bonding) = steric number
- 3. Arrange electron pairs (bonding and non-bonding) on the central atom such that it minimizes electron pair replusion
- 4. Describe what shape you got.
- ** A double or triple bond is counted as one bonding pair when predicting geometry.
- ** Molecules with more than one "central atom" work the same way.

Let's Practice

Using VSEPR model, predict the molecular geometry of SF_4 and IF_5 .

Bond Polarity

- Bond Polarity is the separation of charge leading to a molecule to have a dipole moment
- We can use the difference in electronegativity between two atoms to gauge the polarity of the bond.

Polar Molecules

- Align themselves in an electrical field, including other ions.
- Negative ends attracted positive ends and visa-versa
- A Dipole is established when two electrical charges of equal magnitude but opposite sign are separated by distance.
- The size of a dipole is measured by its dipole moment, μ
 - measured in debyes(D).

Identifying Polar Molecules

Electroneutrality

Bond Order

Bond order - is the number of bonding electron pairs shared by two atoms.

Tentative way (using Lewis structures)-

Bond order = 1 \rightarrow single bond Bond order = 2 \rightarrow double bond Bond order = $3 \rightarrow$ triple bond number of shared pairs in all X - Y bonds

Bond Order = $\frac{1}{number of X - Y links involved in resonance}$

Bond Length

Single Bond > Double Bond > Triple Bond

Bond length is related to the atoms involved in the bond.

TABLE 8.8		Some	Some Average Single- and Multiple-Bond Lengths in Picometers (pm)*												
Single Bond Lengths															
Group															
	1A	4A	5A	6A	7A	4A	5A	6A	7A	7A	7A				
	Н	С	Ν	0	F	Si	Р	S	Cl	Br	I				
Н	74	110	98	94	92	145	138	132	127	142	161				
С		154	147	143	141	194	187	181	176	191	210				
Ν			140	136	134	187	180	174	169	184	203				
0				132	130	183	176	170	165	180	199				
F					128	181	174	168	163	178	197				
Si						234	227	221	216	231	250				
Р							220	214	209	224	243				
S								208	203	218	237				
Cl									200	213	232				
Br										228	247				
I											266				
					- 6			5 B	1						

Bond Dissociation Enthalpy $H_3C-CH_3(g) \rightarrow H_3C^{(g)} + H_3C^{(g)} \qquad \Delta_rH=+386 \text{ kJ/mol}$ $H_2C=CH_2(g) \rightarrow H_2C^{(g)} + H_2C^{(g)} \qquad \Delta_rH=+682 \text{ kJ/mol}$ $HC\equiv CH(g) \rightarrow H\dot{C}^{(g)} + H\dot{C}^{(g)} \qquad \Delta_rH=+962 \text{ kJ/mol}$

Single Bond < Double Bond < Triple Bond

TABLE 8.9		Some	Average	e Bond D	issociati										
			Single Bonds												
	н	С	Ν	0	F	Si	Р	S	CL	Br	I				
Н	436	413	391	463	565	328	322	347	432	366	299	Multiple Bonds			
C		346	305	358	485	-	-	272	339	285	213	N=N	418	c=c	610
N			163	201	283	-	-	-	192	_	-	N≡N	945	C≡C	835
0				146	-	452	335	-	218	201	201	C=N	615	C=0	745
F					155	565	490	284	253	249	278	C≡N	887	C≡0	1046
Si						222	_	293	381	310	234	$0=0$ (in 0_2)	498		
Ρ							201	-	326	-	184				
S								226	255	-	-				
Cl									242	216	208				
Br										193	175				
I											151				

Bond Dissociation Enthalpy $\Delta_r H = \Sigma \Delta H$ (bonds broken) - $\Sigma \Delta H$ (bonds formed)

Orbital Overlap

Lewis Structures and VSEPR doesn't get everything "correct".

Quantum Mechanics – valence-bond theory

- Lewis Structures bonds happen when atoms share electrons
- **VB Theory** electron density builds up between two nuclei when valence atomic orbitals merge with each other.
- This merger (or mixing) results in the orbitals occupying the same space called an **overlap**.
- **Overlap** allows electrons of opposite spin to share the common space between the nuclei forming a bond.

Orbital Overlap

Hybridization

Consider BeF₂

F $(1s^22s^22p^5)$ – so p orbital

What about B $(1s^22s^2)$?

Answer is **hybridization** – the process of mixing two or more atomic orbitals on an atom.

sp² Hybridization

atomic orbitals = # hybrid orbitals

Consider BF₃

sp² and sp³ Hybridization

sp3

atomic orbitals = # hybrid orbitals Consider CH₄ promote hybridize sp3 2р 2p 2s2sN atom lone pair uses N-H bond is formed sp³ hybrid orbital. from overlap of N atom sp³ hybrid orbital and H atom 1s orbital. H−N−H N.....H H-Pv Pz Н 107.5° Hybridize to form four sp³ hybrid orbitals Lewis structure Electron-pair geometry Molecular model sp3 sp3 0 atom lone pairs use 0-H bond is formed sp^3 hybrid orbitals. from overlap of 0 atom SD3 SD3 sp^3 hybrid orbital and H atom 1s orbital. Shown together (large lobes only) :0-н """ H sp3 109.5 Η 104.5°

Lewis structure Electron-pair geometry

Ð

20

Molecular model

Hybridization

