Chem 111

Lecture 33

UMas 🖞 🔺 🝐 🝐 🍐 🗁 🗗 ... 🛓 🖣 🕨 Initiative

Announcement

- Exam 3: Dec. 6th in class
- \rightarrow Same deal as before
 - No Makeups
 - Pyramid
 - Bring pencils, calculator, ID card and a good erasers
- Practice Exam:

http://courses.umass.edu/chem111-bbotch/

• Breanne has a recitation session HASA 126 – 12/1 (5-6pm)

Announcement Part 2

- SI sessions
- Sunday 4 6 PM, ISB 135, Prof. Vachet
- Spark discussion extra credit should show on Owl grades.
- Owl homework: if you did something during grace period and it hasn't checked off and it has been longer than a month contact me.
- \rightarrow You did the module correct.
- \rightarrow You did ALL parts of the module correct.
- \rightarrow You FINISHED ALL part of the module within grace period.

Exam

- Chapter 6: Dia/Paramagnetism
- Chapter 7: Everything
- Chapter 8: Everything
- Chapter 9: What I cover today
- No Equation Sheet

Know Formula Charge B.O. $\Delta H_r =$

• Need to know concepts from earlier chapters.

Homework

- Start Reading Chapter 9
- Owl Homework

Recap $\overset{+}{\overset{+}{\overset{+}{}}}$ $\overset{+}{\overset{+}{\overset{+}{}}}$ $\overset{+}{\overset{+}{\overset{+}{}}}$ $\overset{+}{\overset{+}{\overset{+}{}}}$ $\overset{+}{\overset{+}{\overset{+}{}}}$ $\overset{+}{\overset{+}{\overset{+}{}}}$ $\overset{+}{\overset{+}{\overset{+}{}}}$ $\overset{+}{\overset{+}{}}$ $\overset{+}{\overset{+}}$ $\overset{+}{\overset{+}{}}$ $\overset{+}{\overset{+}}{\overset{+}}$ $\overset{+}{\overset{+}{}}$ $\overset{+}{\overset{+}{}}$ $\overset{+}{\overset{+}{}}$ $\overset{+}{\overset{+}{}}$ $\overset{+}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{}$

- Polar Molecules
- Electroneutrality
- Bond Order
- Bold Length
- Bond Enthalpy

single bond = B.O. = 1

Orbital Overlap

Lewis Structures and VSEPR doesn't get everything "correct".

Quantum Mechanics – valence-bond theory

 Lewis Structures – bonds happen when atoms share electrons

• **VB Theory** - electron density builds up between two nuclei when valence atomic orbitals merge with each other.

• This merger (or mixing) results in the orbitals occupying the same space called an **overlap**.

• Overlap – allows electrons of opposite spin to share the common space between the nuclei forming a bond.

Orbital Overlap H2 H H

⁷ and sp³ Hybridization H # atomic orbitals = # hybrid orbitals Consider CH₄ H IIIC promote H- C-H hybridize sp3 2s2s2р 2p H N atom lone pair uses N-H bond is formed sp³ hybrid orbital. from overlap of N atom sp³ hybrid orbital and H atom 1s orbital. н—й—н N.....H H' PV Pz Н 107.5° Hybridize to form four sp3 hybrid orbitals Lewis structure Electron-pair geometry Molecular model sp3 sp3 0 atom lone pairs use 0-H bond is formed sp^3 hybrid orbitals. from overlap of 0 atom SD3 SD3 R sp^3 hybrid orbital and H atom 1s orbital. Shown together (large lobes only) :: •Ю—Н ""*"*H 109.5 Η 104.5° 5 Lewis structure Electron-pair geometry Molecular model

Hybridization

Summary for Hybridization

- 1. Draw the Lewis structure for the molecule or ion
- 2. Determine the electron-pair geometry using VSEPR model.
- 3. Specify the hybrid orbitals needed to accommodate the electron pairs based on their geometrical arrangement.

Let's Practice

Indicate the hybridization of orbitals employed by the central atom in each of the following: NH_2^- and SF_6 .

Multiple Bonds

Internuclear Axis - Line connecting the nuclei of two bonded atoms

Sigma (σ) **bond** – is a covalent bond in which the overlap region lies along the internuclear axis.

Pi (π) **bonds** – is a covalent bond in which the overlap regions lie above and below the internuclear axis.

Multiple Bonds

Double bond = 1 σ bond and 1 π bond

Triple bond = 1 σ bond and 2 π bond

 π bond usually happen with unhybridized p orbitals, therefore sp and sp² hybridization.

♦ 5 8 ... ↓ 4

 π Usually C, O, N, and S

Cis-Trans Isomers

Isomers – are compounds that have the same formula but different structures.

Molecular Orbital Theory

Molecular orbitals have many characteristics similar to atomic orbitals: hold two electrons, have discreet energies.

Consider H₂

Molecular Orbital Theory

Molecular orbitals have many characteristics similar to atomic orbitals: hold two electrons, have discreet energies.

Consider H₂

The total number of molecular orbitals created equal the total number of atomic orbitals used.

Bonding orbital – lower energy orbital (than atomic orbitals) that concentrate electron density between the atoms.

Antibonding orbital – higher energy orbital (than atomic orbitals) that have little electron density between the atoms.

sigma (σ) **orbital** – bonding molecular orbital centered around internuclear distance.

sigma-star (σ *) **bond** – anitbonding molecular orbital centered around internuclear distance.

1s – denotes the character of the atomic orbitals that make up the molecular orbitals.

Electron fill like atomic orbitals, low energy first & spin paired.

Bond Order (Using MOT)

Bond order = $\frac{1}{2}$ (# of bonding electrons - # of nonbonding electrons)

Let's Practice

Draw the molecular energy level diagram of He_2^+ ? What is the bond order?

