Chem 111

Lecture 34

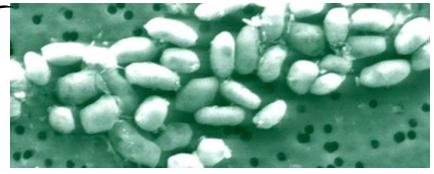
Announcement

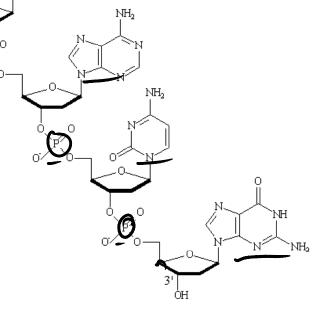
- Exam 3: Dec. 6th in class
- →Same deal as before
 - No Makeups
 - Pyramid
 - Bring pencils, calculator, ID card and a good erasers
- Practice Exam:

http://courses.umass.edu/chem111-bbotch/

Announcement Part 2

- SI sessions
- Sunday 4 6 PM, ISB 135, Prof. Vachet
- Owl homework, unchecked homework should be correct for everything except chapter 8 & 9 work.


Homework


- Start Reading Chapter 9
 Continue
- Owl Homework
- → Some homework was added late and will be on the Exam (Due Sunday)

Chemistry Today/

но<u></u>5'

Recap

- Orbital Overlap
- Hybridization
- sp² and sp³

$$0:6$$
 $c:4$
 $N:5$
 e
 $16e$
 $0:6$
 $C:N:$
 $0:C-N:$
 $0:C-N:$
 $0:C-N:$
 $0:C-N:$

$$FC = GH - (1pe - \frac{1}{2}b)$$

$$4$$

$$5 - 7 = -2$$

$$5 - 5 = 0$$

$$5 - 6 = -1$$

Hybridization

Two electron pairs	Arrangement of Hybrid Orbitals	Geometry	Example	Atomic Orbital Set	Hybrid Orbital Set	Geometry	Examples
sp —	00	Linear	BeCl ₂	* *	Two sp	180° Linear	BeF₂, HgCl₂
Three electron pairs sp ²	6.0	Trigonal-planar	120° BF ₃	s,p,p	Three sp ²	120° Trigonal planar 109,5°	BF₃, SO₃
Four electron pairs sp ³		Tetrahedral	109.5°	\$.p.p.p	Foursp ³	Tetrahedral	CH₄, NH₃, H₂O
Five electron pairs sp ³ d	**·••	Trigonal-bipyramidal	1220 6 PF ₅	_s,p,p,p,d	Five sp³d	120° Trigonal bipyramidal	PFs, SF4, BrFs
Six electron pairs sp ³ d ²		Octahedral		s,p,p,p,d,d =	Six sp³d°	90° 90° Octobedral	SF₄, CIF₃, XeF₄

@ Brooks/Cole, Cengage Learning

Summary for Hybridization

1. Draw the Lewis structure for the molecule or ion

- Determine the electron-pair geometry using VSEPR model.
- 3. Specify the hybrid orbitals needed to accommodate the electron pairs based on their geometrical arrangement.

Let's Practice

Indicate the hybridization of orbitals employed by the central atom in each of the following: NH₂⁻ and SF₆.

N:5
H:
$$1 \times 2 = 2$$
 $e: 1$
Now H

F-7x6= 42e

Y8e-/48

SPPP

H-N-H

Sp3

Ye/8

SPPP

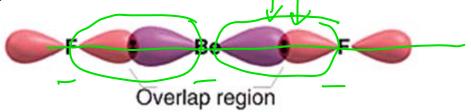
SPPP

SPPP

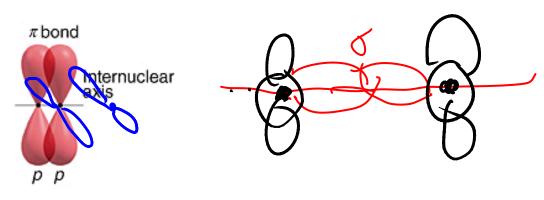
SPPP

SP3d²

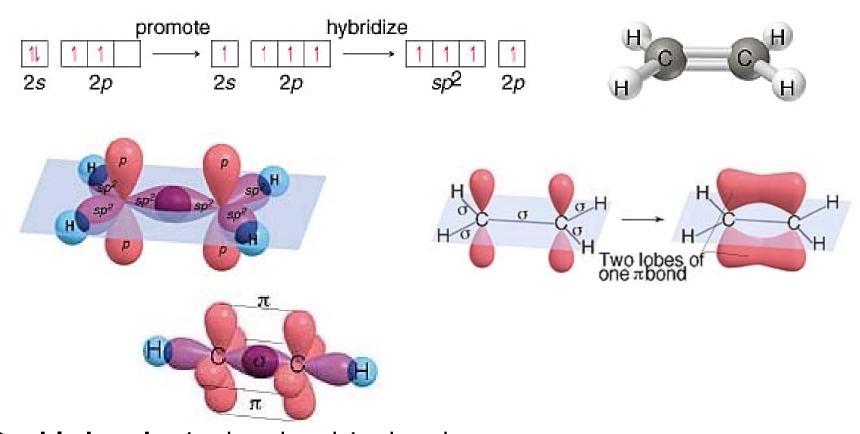
SPPP


SPPP

SP3d²

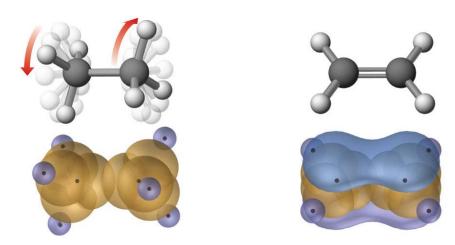

Multiple Bonds 0= C=0

Internuclear Axis - Line connecting the nuclei of two bonded atoms


Sigma (σ) bond – is a covalent bond in which the overlap region lies along the internuclear axis.

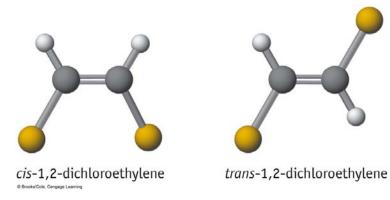
Pi (π) bonds – is a covalent bond in which the overlap regions lie above and below the internuclear axis.

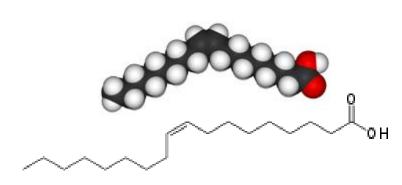
Multiple Bonds



Double bond = 1 σ bond and 1 π bond **Triple bond** = 1 σ bond and 2 π bond π bond usually happen with unhybridized p orbitals, therefore sp and sp² hybridization.

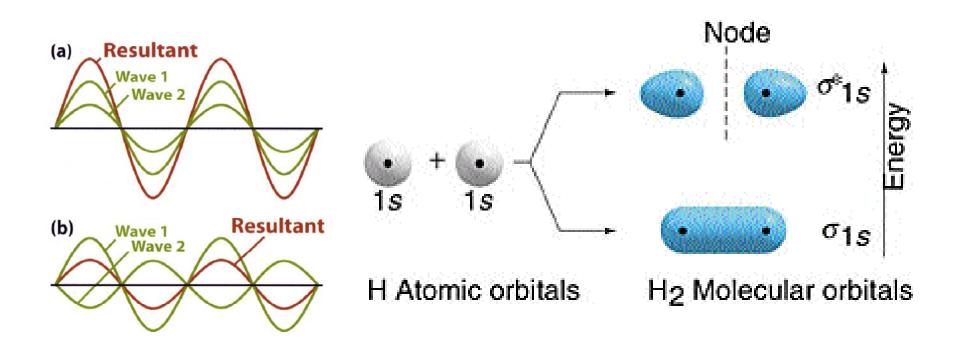
 π Usually C, O, N, and S




Cis-Trans Isomers

Isomers – are compounds that have the same formula but

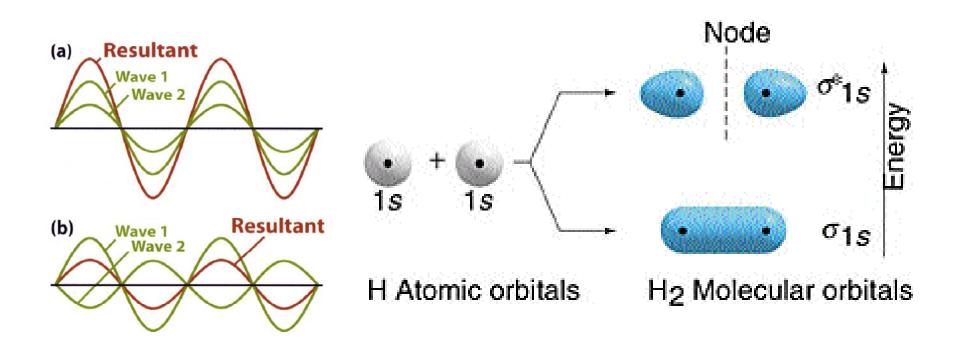
different structures.

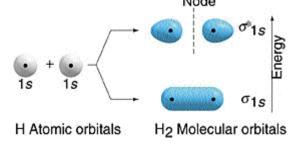


Molecular Orbital Theory

Molecular orbitals have many characteristics similar to atomic orbitals: hold two electrons, have discreet energies.

Consider H₂

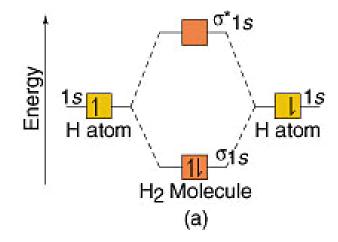



Molecular Orbital Theory

Molecular orbitals have many characteristics similar to atomic orbitals: hold two electrons, have discreet energies.

Consider H₂

Molecular Orbital Theory


The total number of molecular orbitals created equal the total number of atomic orbitals used.

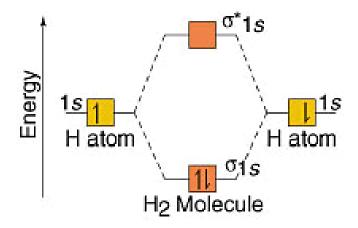
Bonding orbital – lower energy orbital (than atomic orbitals) that concentrate electron density between the atoms.

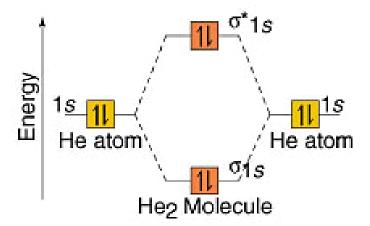
Antibonding orbital – higher energy orbital (than atomic orbitals) that have little electron density between the atoms.

MOT Energy Level Diagram

sigma (σ) **orbital** – bonding molecular orbital centered around internuclear distance.

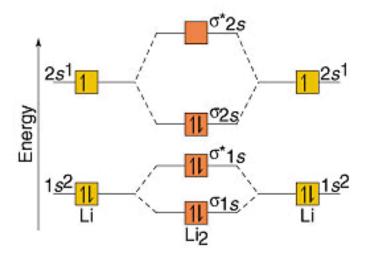
sigma-star ($\sigma*$) **bond** – anithonding molecular orbital centered around internuclear distance.


1s – denotes the character of the atomic orbitals that make up the molecular orbitals.


Electron fill like atomic orbitals, low energy first & spin paired.

Bond Order (Using MOT)

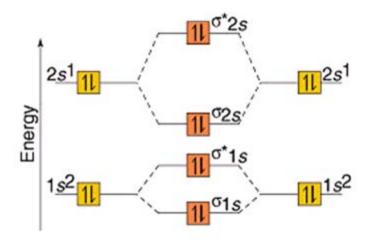
Bond order = $\frac{1}{2}$ (# of bonding electrons - # of nonbonding electrons)


Let's Practice

Draw the molecular energy level diagram of He₂+? What is the bond order?

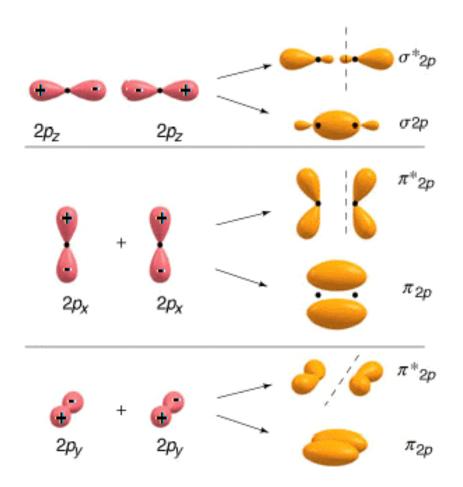
MO of Li₂

Atomic orbitals must be of similar energy to form molecular orbitals.

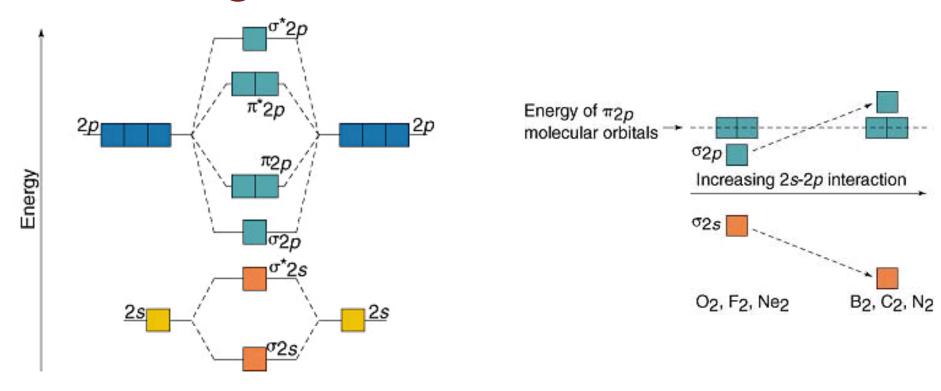


Core electrons usually don't do not contribute significantly to bonding in the molecule formation.

Li₂ MO Configuration =
$$(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s}^*)^2$$

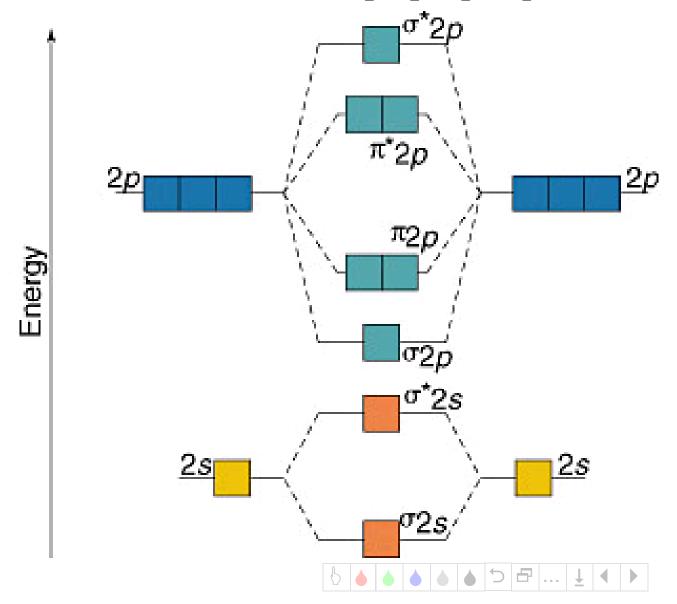

MO of Be₂

Be₂ MO Configuration =
$$(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s}^*)^2(\sigma_{2s}^*)^2$$

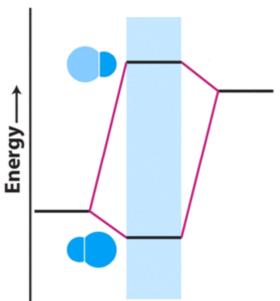

Molecular orbitals from P orbitals

Note the amount they can mix and their relation to internuclear axis

MO Diagram


MOT P block

Larg	ge 2 <i>s</i> -2 <i>p</i>	interactio	Small 2 <i>s</i> -2 <i>p</i> interaction			
	B ₂	C ₂	N_2	O ₂	F ₂	Ne ₂
σ^*_{2p}				σ* _{2p}		11
π*2p				π^*2p 1 1	11 11	11 11
σ_{2p}			11	π_{2p} 1 1	11 11	11 11
π_{2p}	1 1	11 11	11 11	σ_{2p} 1	11	11
σ*2s	11	11	11	σ*2s 1	11.	11
σ _{2s}	11.	11	11	σ _{2s} 1	11	11


Let's practice

What is the Bond Order O₂, O₂-, O₂²⁻, O₂+

MOT-Heteronuclear Diatomics

- Differences from Homonuclear case:
 - Electrons will be drawn to the more electronegative element.
 Thus bonding orbitals will have more of that element character and antibonding orbitals will have more character from the less electronegative element.
 - As a result of having more A character, the molecular orbital will be closer in energy to that elements atomic orbital.

