Chem 111

Lecture 35

UMas 🖞 🔺 📥 📥 🖕 🗁 🗗 ... 🛓 🖣 🕨 Initiative

Announgement

- Final: Dec. 127; 1:30pm 3:30pm in Totman Gym
 - No Makeups
 - No Pyramid
 - Bring pencils, calculator, ID card and a good erasers
- Review Schedule ISB 135
 Weds 4-6 PM C. Joseph
 Weds 7-9 PM J. Tyson and M. Johnson
 Thurs 4-6 PM B.Botch
- Office Hours only on Tuesday for Finals week

Homework

- Continue Reading Chapter 9
- Owl Homework

Recap

- Hybridization
- Multiple Bonds

Multiple Bonds

58....

Molecular Orbital Theory

Molecular orbitals have many characteristics similar to atomic orbitals: hold two electrons, have discreet energies.

Consider H₂

Molecular Orbital Theory

Molecular orbitals have many characteristics similar to atomic orbitals: hold two electrons, have discreet energies.

Consider H₂

R

atomic orbitals used.

Bonding orbital – lower energy orbital (than atomic orbitals) that concentrate electron density between the atoms.

Antibonding orbital – higher energy orbital (than atomic orbitals) that have little electron density between the atoms.

sigma (σ) **orbital** – bonding molecular orbital centered around internuclear distance.

sigma-star (σ ***) bond** – anitbonding molecular orbital centered around internuclear distance.

1s – denotes the character of the atomic orbitals that make up the molecular orbitals.

Electron fill like atomic orbitals, low energy first & spin paired.

Bond Order (Using MOT)

Bond order = $\frac{1}{2}$ (# of bonding electrons - # of nonbonding electrons)

Let's Practice

Draw the molecular energy level diagram of He_2^+ ? What is the bond order?

MO of Li₂

Atomic orbitals must be of similar energy to form molecular orbitals.

Core electrons usually don't do not contribute significantly to bonding in the molecule formation.

Li₂ MO Configuration =
$$(\sigma_{1s})^2 (\sigma_{1s}^*)^2 (\sigma_{2s})^2$$

MO of Be₂

Be₂ MO Configuration = $(\sigma_{1s})^2 (\sigma_{2s}^*)^2 (\sigma_{2s}^*)^2 (\sigma_{2s}^*)^2 (\sigma_{2s}^*)^2$

Molecular orbitals from P orbitals

Note the amount they can mix and their relation to internuclear axis

MO Diagram

MOT P block

Large 2s-2p interaction				Small 2 <i>s</i> -2 <i>p</i> interaction		
	B ₂	C ₂	N_2	O ₂	F ₂	Ne ₂
σ^{*}_{2p}				σ* _{2p}		11
π*2p				π^{*2p} 1 1	11 11	11 11
σ_{2p}			11	π_{2p} 1 1	11 11	11 11
π_{2p}	11	11 11	11 11	σ_{2p} 1	11	11
σ*2s	11	11	11	σ^*_{2s} 1	11	11
σ_{2s}	11	11	11	σ_{2s} 1	11	11

Let's practice

What is the Bond Order O_2 , O_2^- , O_2^{2-} , O_2^+

MOT-Heteronuclear Diatomics

- Differences from Homonuclear case:
 - Electrons will be drawn to the more electronegative element. Thus bonding orbitals will have more of that element character and antibonding orbitals will have more character from the less electronegative element.
 - As a result of having more A character, the molecular orbital will be closer in energy to that elements atomic orbital.

