Chem 111

Lecture 4

UMas 🖞 🍐 🍐 🍐 🍐 🗁 🗗 ... 🛓 🖣 🕨 Initiative

Announcements

• My Office is LGRT- 503, room of cubicles, all the way in the back.

Homework

- Finishing Up Reading Chapter 2
- OWL online homework.

Recap

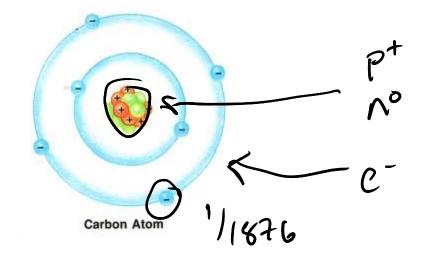
• Error

.

- Scientific Notation
- Significant Figures
- Dimensional Analysis
- Atomic Structure

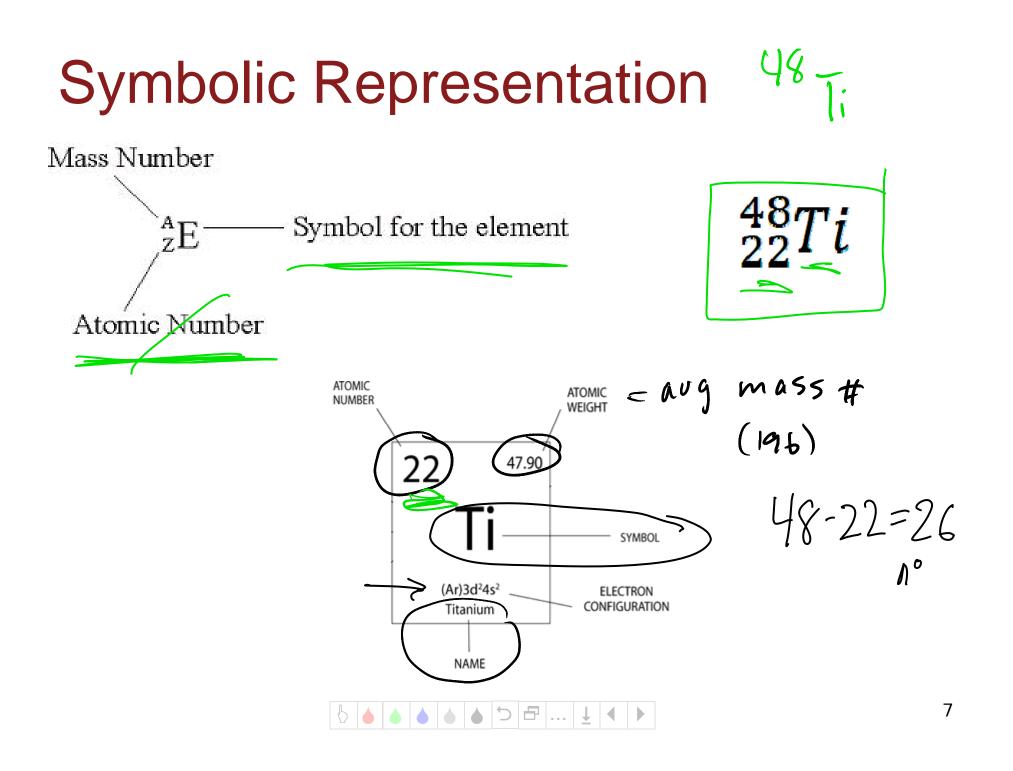
Atomic Structure

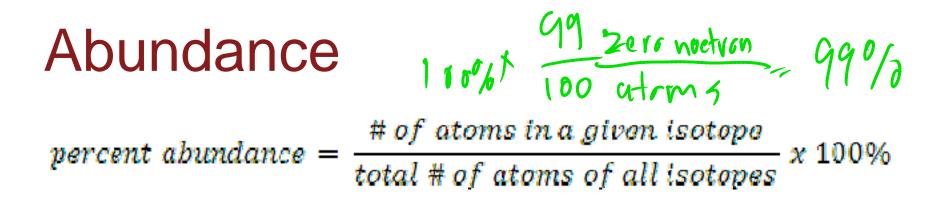
All atoms of an element have the same number of protons in the nucleus.

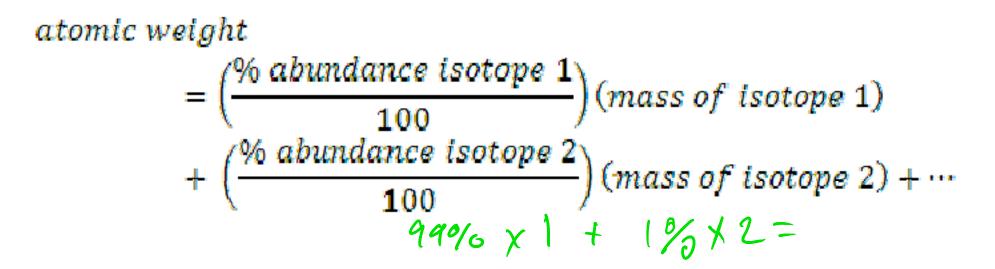

Elements are distinguished from one another by the number of protons or **Atomic Number (Z)**.

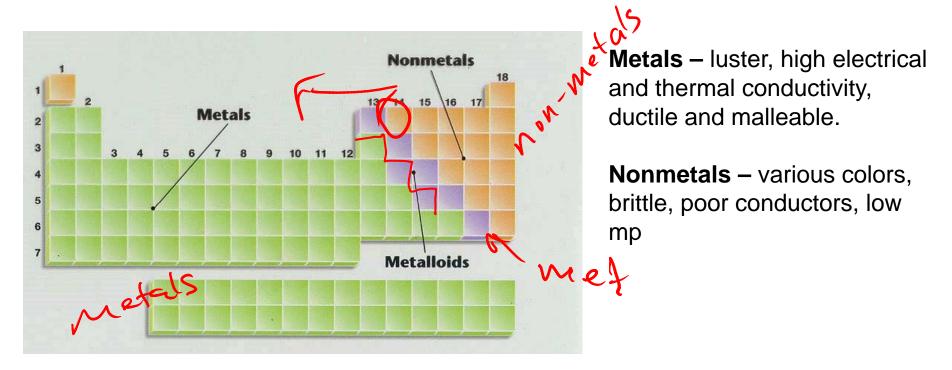
Isotopes are atoms of a given element that differ in the number of neutrons (and mass).

Mass Number (A), is the total number of protons plus neutrons.




Atomic Structure


	Change
Protons	New Element
Neutrons	New Isotope
Electrons	New Ion



Atomic weight - is the weighted average mass $n \nu m b c r_{2}$

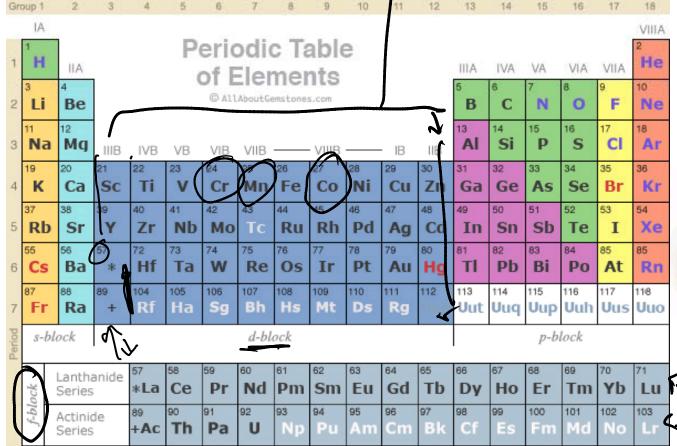
<u> </u>		ric	_	ic		al	olo			45	44	21	СХ4 Х4		V	₩¥ (¢)	, y (y)	40	
1	11	2 (IA 4 Be 12 Mg	-P		P					10	• (B)		B 13 AI	14 (VA) 6 C 14 Si	15 VA 7 N 15 P	16 VIA 8 0 16 S	17 VIIA 9 F 17 CI	18 VIIIA 2 He 10 Ne 18 Ar	
4	19	20 /Ca 38	21 SC 39	22 Ti 40	23 V 41	VIB 24 Cr 42	25 Mn 43	26 Fe	27 CO 45	28 Ni 46	29 Cu 47	30 Zn 48	31 Ga 49	50	33 As 51	34 Se	35 Br 53	38 Kr 54	dr
5	55	56	Y 57 *	Zr ⁷² Hf	Nb ⁷³ Ta	Mo 74 W	тс ⁷⁵ Re	Ru ⁷⁶ Os	Rh 77 Ir	Pd 78 Pt	Ag ⁷⁹ Au	Cd ®0 Hg	In ⁸¹ Tl	82 Pb	Sb ⁸³ Bi	Те ⁸⁴ Ро	I 85 At	85 Rn	no a b
2 benod		88 Ra	89 +	104 Rf	¹⁰⁵ На	106 Sg	Bh d-bl	108 Hs ock	109 Mt	110 Ds	111 Rg	112 Unb	113 Uut	114 Uuq		116 Uuh lock	117 Uus	118 Ulio	
	f-block	Lanth Series Actini Series	; de	57 *La 89 +Ac	58 Ce 90 Th	59 Pr 91 Pa	60 Nd 92 U	61 Pm 93 Np	62 Sm 94 Pu	63 Eu 95 Am	64 Gd 96 Cm	65 Tb 97 Bk	66 Dy 98 Cf	67 Ho 99 Es	68 Er 100 Fm	69 Tm 101 Md	70 Yb 102 No	71 Lu 103 Lr	

Periodic Table

Metalloids – Have properties that fall in between those of metals and nonmetals

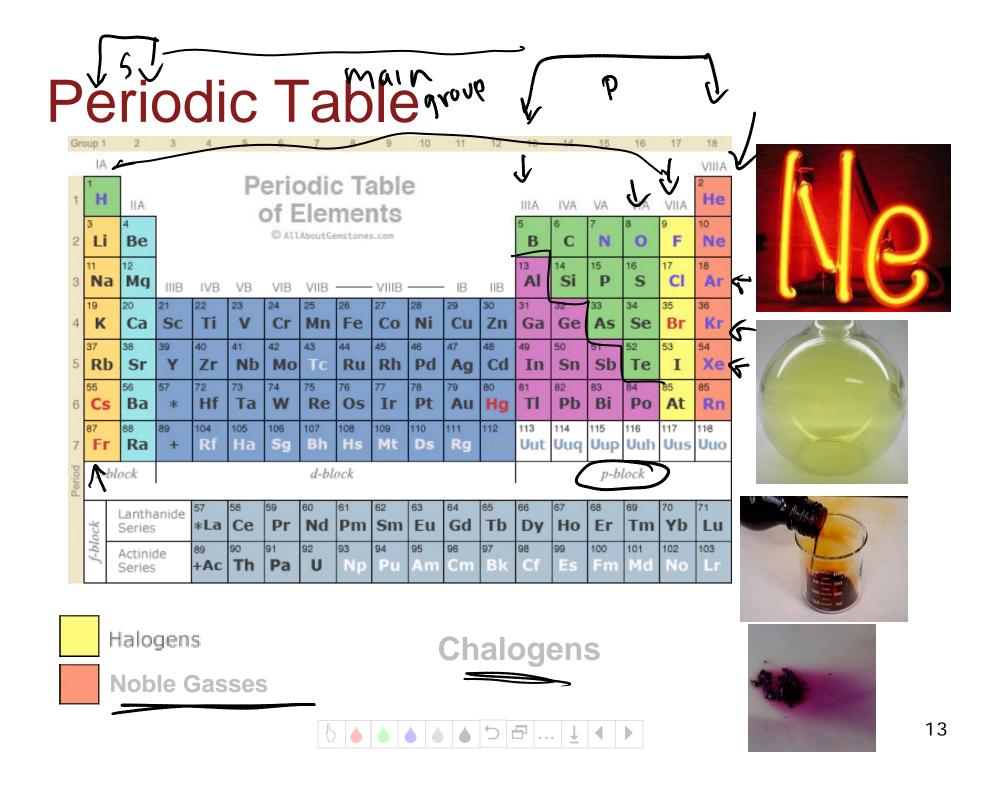
Periodic Table

		Gr	oup 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		- 20	IA					141		-									\sim	VIIIA
eg cture		1	H	¥A)			T				able	3			IIIA	IVA	VA	VIA	VIIA	He
さ	-	4	3	4	1		0			ner					5	6	7	8	9	10
g		2	Li	Be	7			@ A11	AboutGe	enstone	s.com				В	С	N	0	F	Ne
2		3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
\overline{c}		~	19	20	111 B	IVB 22	VB 23	VIB 24	VIIB 25	26	VIIIB	28	- IB 29	11B 30	31	32	33	34	35	36
		4	к	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
$\boldsymbol{\nu}$			37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
		5	Rb	Sr	Y	Zr	Nb	Мо		Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
		6	Cs	56 Ba	57 ×	72 Hf	73 Ta	74 W	75 Re	76 OS	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	85 Rn
		C	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
		7	Fr	Ra	4	Rf	Ha	Sg	Bh	Hs	Mt	Ds	Rg	Unb	Uut	Uuq	Uup	Uuh	Uus	Uuo
		Period	s-bl	ock					d-bl	ock							p-bi	lock		
		1		Lantha		57	Collins of	59	60	61	62	63	64	65	66 Daa	67	68	69	70	71
			f-block	Series		*La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				Actinio Series		89 +AC	90 Th	91 Pa	92 U	93 ND	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103
				o en rea																



Alkali Metals

Periodic Table > complexes = color



Transition Metals

Rare Earth Metals

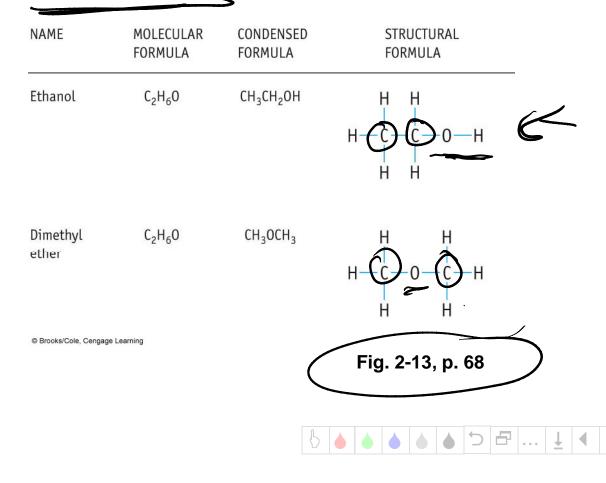
Molecules

Molecules – are assemblies of two or more atoms tightly bound together. This "package" of atoms behaves like a single distinct object. Pure substance.

 O_2 v O_3 H - C - IIDiaxygen
diatomic
odorless
gas - colorless
mp/bp = 54.36 K / 90.20 KDiametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diametria
Diam

Formulas

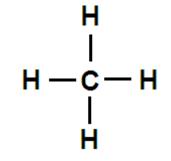
Empirical (or simplest) formula – gives only the relative number of atoms of each type in a molecule.


Molecular formula – the actual numbers and types of atom in a molecule

Name	Empirical	Molecular	
Water	H ₂ O	H ₂ O	ſ,
Peroxide	НО	H_2O_2	4
Ethanol	C ₂ H ₆ O	C ₂ H ₆ O	44
Dimethyl Ether	C ₂ H ₆ O	C ₂ H ₆ O	4
		$\int C_2 H_6 - M_6 = E$	F
	5 ▲ ▲ ▲ ▲ 5 ₽	$\dots \underline{1} \blacktriangleleft \blacksquare$	

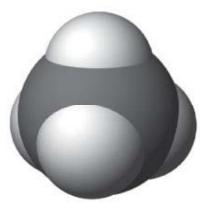
Formulas

Condensed formula – show atoms in relation (how they are grouped) to each other without showing the bonds.


Structural formula – is a graphical depiction of the molecular structure.

Models

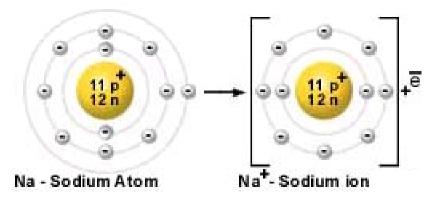
Methane

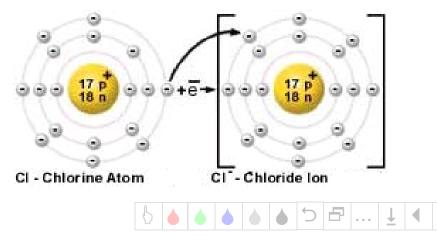


Simple perspective drawing © Brooks/Cole, Cengage Learning

Plastic model

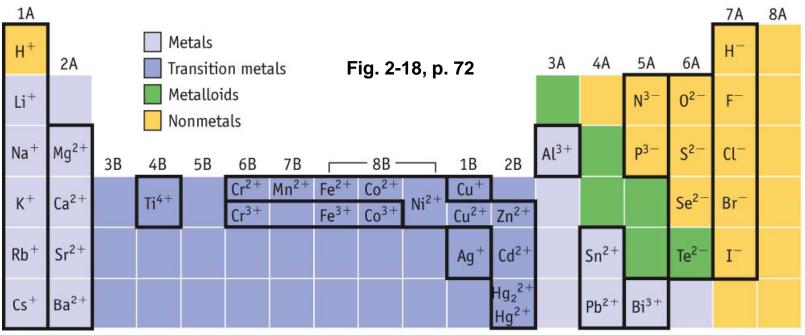
Ball-and-stick model


Space-filling model


lons

lons – are charged particles. Occur when electrons are removed or added to a neutral atom or molecule.

Cation – an ion with a positive charge.



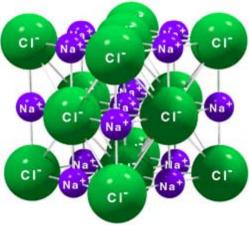
Anion – an ion with a negative charge.

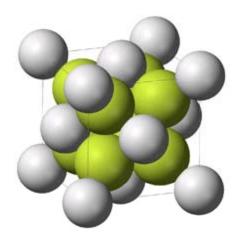
Monatomic Ions

- Metals generally lose electrons and form cations.
- Nonmetals generally gain electrons and form anions.
- Groups $1A 3A \rightarrow$ Lose electrons = Group Number
- Groups non-metals \rightarrow Gain electrons = 8 group number

Ionic Compounds

lonic Compounds - are compounds that contain positively charged ions and negatively charged ions.


Na \rightarrow Na⁺ + e⁻ Cl + e⁻ \rightarrow Cl⁻


Na⁺ + Cl⁻ → NaCl

Metals + Nonmetals \rightarrow Ionic Compounds

 $Ca \rightarrow Ca^{2+} + 2e^{-}$ F + e^{-} \rightarrow F⁻

 $Ca^{2+} + F^{-} \rightarrow CaF_{2}$

Polyatomic Ions

Polyatomic Ion - is a charged compound composed of two or more atoms bonded together.

ormula	Name	Formula	Name				
ATION: Positi	ve Ion						
NH₄+	ammonium ion						
NIONS: Nega	tive Ions						
lased on a Gro	oup 4A element	Based on a Gr	oup 7A element				
N-	cyanide ion	CIO-	hypochlorite ion				
H ₃ CO ₂ -	acetate ion	Cl02-	chlorite ion				
0 ₃ ²⁻	carbonate ion	ClO ₃ -	chlorate ion				
C0 ₃ -	hydrogen carbonate ion (or bicarbonate ion)	Cl04-	perchlorate ion				
ased on a Gro	oup 5A element	Based on a Group 6A element					
0 ₂ -	nitrite ion	OH-	hydroxide ion				
03-	nitrate ion	S032-	sulfite ion				
043-	phosphate ion	S04 ²⁻	sulfate ion				
P042-	hydrogen phosphate ion	HS0 ₄ ⁻	hydrogen sulfate io				
2PO4-	dihydrogen phosphate ion		(or bisulfate ion)				

TABLE 2.4 Formulas and Names of Some Common Polyatomic Ions

Table 2-4, p. 74

© Brooks/Cole, Cengage Learning

