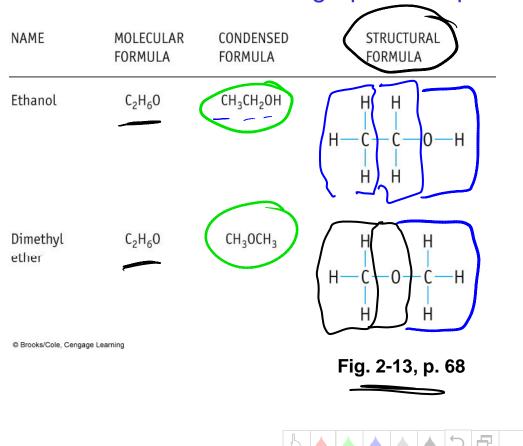
Chem 111

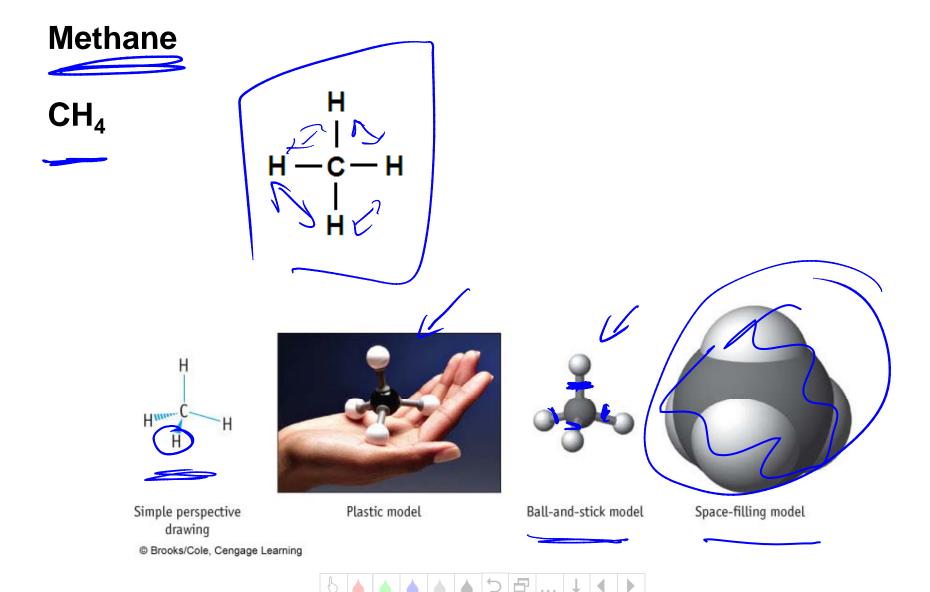
Lecture 5

Homework

- Finishing Up Reading Chapter 2
- OWL online homework.

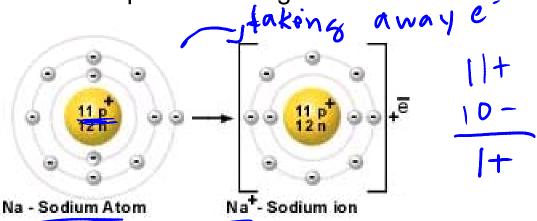
Recap

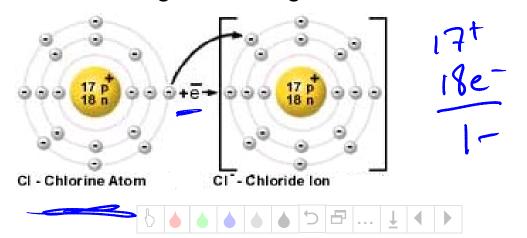

- Periodic Table
- Molecules
- Chemical Formulas


Formulas

Condensed formula – show atoms in relation (how they are grouped) to each other without showing the bonds.

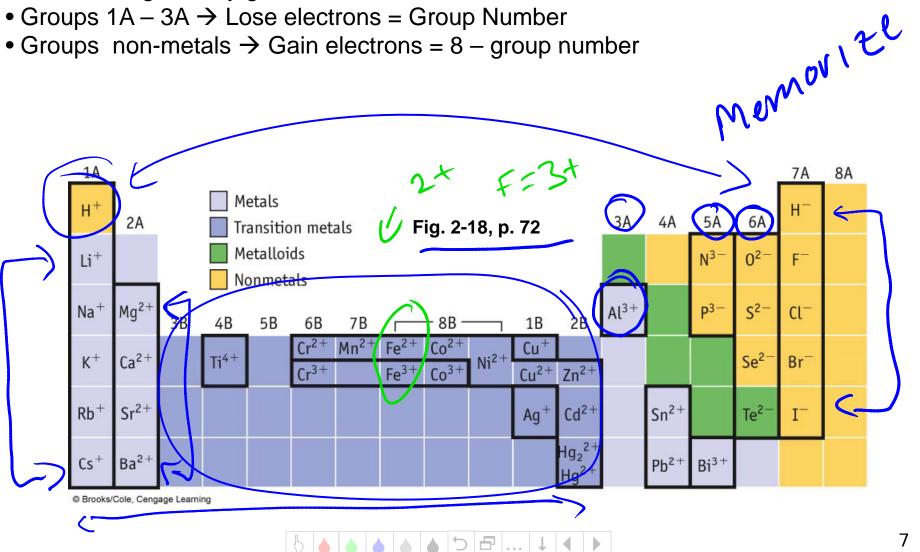
Structural formula – is a graphical depiction of the molecular structure.


Models


lons

lons – are charged particles. Occur when electrons are removed or added to a neutral atom or molecule.

Cation – an ion with a positive charge.



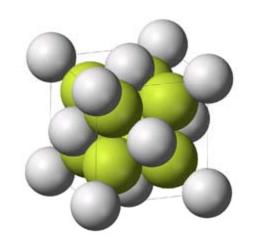
Anion – an ion with a negative charge.

Monatomic Ions

- Metals generally lose electrons and form cations.
- Nonmetals generally gain electrons and form anions.
- Groups 1A 3A → Lose electrons = Group Number

Ionic Compounds = metal + non-metal

Ionic Compounds - are compounds that contain positively


charged ions and negatively charged ions.

Na
$$\rightarrow$$
 Na⁺ + e⁻
CI + e⁻ \rightarrow CI⁻
Na⁺ + CP \rightarrow NaCI

Metals + Nonmetals → Ionic Compounds

Ca
$$\rightarrow$$
 Ca²⁺ + 2e⁻
F + e⁻ \rightarrow F⁻

$$Ca^{2+} + F^{-} \rightarrow CaF_2 \quad CaF$$

Polyatomic Ions

Polyatomic Ion - is a charged compound composed of two or more atoms bonded together.

TABLE 2.4 Formulas and Names of Some Common Polyatomic Ions				memoria
Formula	Name	Formula	Name	Jat Cl
CATION: Positi				
NH ₄ +	ammonium ion			Nacl
ANIONS: Nega	ntive Ions		X	$\langle (C_{1}) \rangle$
Based on a Group 4A element		Based on a Group 7A element		
CN-	cyanide ion	CIO-	hypochlorite ion	Na CP
CH ₃ CO ₂ -	acetate ion	ClO ₂ -	chlorite ion	
CO ₃ ²⁻	carbonate ion	ClO ₃ -	chlorate ion	11 CA (501/C
HCO ₃ ⁻	hydrogen carbonate ion (or bicarbonate ion)	ClO ₄ -	perchlorate ion	H2314 (4)
Based on a Gr	oup 5A element	Based on a Gr	oup 6A element	
NO ₂ -	nitrite ion	OH-	hydroxide ion	
NO ₃ -	nitrate ion	SO ₃ ²⁻	sulfite ion	
PO ₄ 3-	phosphate ion	S0 ₄ ²	sulfate ion	
HPO ₄ 2-	hydrogen phosphate ion	HSO ₄ -	hydrogen sulfate ion	
H ₂ PO ₄ -	dihydrogen phosphate ion		(or bisulfate ion)	
				Table 2-4, p. 74

Extra Polyatomic Ions

Not on that table.

13
SCN- 02-
02-
52-
N3-

Formula	Name
N_3^-	Azide
SCN-	Thiocyanate
O ²⁻	Oxide
O ₂ ²⁻	Peroxide
S ²⁻	Sulfide
N ³⁻	Nitride

Table 2-4, p. 74

Positive Ions

Monatomic cations take the name of the element itself:

Na+ - sodium ion

Ca²⁺ - calcium ion Al³⁺ - aluminum ion

• For metals that can form different charges, the positive charge is given by a Roman numeral in parentheses following the name of the metal.

Positive Ions

• Older method use the *-ous* or *-ic*, representing the lower and higher charged ions, respectively .

Fe
$$^{2+}$$
 - ferrous ion Cu^+ - cuprous ion Cu^{2+} - ferric ion Cu^{2+} - cupric ion

•Non-metals have names that end in -ium.

$$\rightarrow NH_4^+$$
 - ammonium ion $NH_3^+ \leftarrow \rightarrow NH_4^+$ $\rightarrow NH_4^+$ $\rightarrow NH_4^+$ $\rightarrow NH_4^+$

Negative Ions

 Monatomic anions have names formed by dropping the ending of the name of the element and adding the ending -ide.

N³⁻ - nitride ion

halogens

• Polyatomic anions containing oxygen have names ending in -ate or -ite.

$$NQ_{3}$$
 - nitrate ion SQ_{4}^{2} - sulfate ion SQ_{3}^{2} - sulfite ion

$$SQ_{4}^{2}$$
 - sulfate ior

Negative Ions

• Monatomic anions have names formed by dropping the ending of the name of the element and adding the ending -ide.

 H^{-} - hydride ion O^{2-} - oxide ion N^{3-} - nitride ion

• Polyatomic anions containing oxygen have names ending in -ate or -ite.

 NO_3^- - nitrate ion SO_4^{2-} - sulfate ion

 NO_2^{-1} - nitrite ion SO_3^{-2} - sulfite ion

Nomenclature

Names of ionic compounds are the cation name followed by the name of anion.

Al(NO₃)₃ \rightarrow aluminum nitrate

(Cul) \rightarrow copper(I) iodide

(Cul₂ \rightarrow copper(II) iodide

(Cul₂ \rightarrow sodium chloride

(CaF₂ \rightarrow calcium flouride

Molecular Compounds

Usually a non-metal + non-metal

- Leftmost (based on periodic table) element is usually written first.
- If in the same group, the lowest is named first.
- The name of the second element is give an -ide ending.
- Greek prefixes (mono, di, tri, tetra...) are used to indicate the number of each atom. Mono is never used on the first element.

NF₃ dinitrogen tetraoxide
NF₃ nitrogen trifluoride
P₄S₁₀ tetraphosphorus decasulfide

Co carbon monoxide

Mole

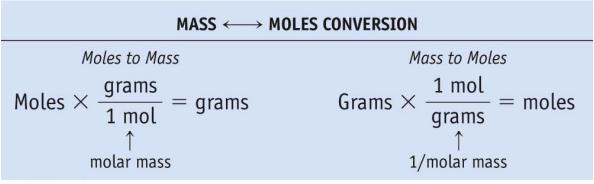
A **mole** is defined as the amount of matter that contains as many objects (atom, molecules, etc) as the number of atoms in exactly 12 g of ¹²C.

Avogadro's Number = 6.0221367×10^{23}

```
1 mol ^{12}C atoms = 6.02 x 10^{23} ^{12}C atoms
```

1 mol H_2O molecules = 6.02 x 10^{23} H_2O molecules

1 mol Na⁺ ions = 6.02×10^{23} Na⁺ ions



Molar Mass

Molar Mass is the quantity in grams numerically equal to its atomic (or formula) weight.

One ¹²C atom weighs 12 u; 1 mol ¹²C weighs 12 g One ²⁴Mg atom weighs 24 u; 1 mol ²⁴Mg weighs 24 g

M of ²⁴Mg is 24.0 g/mol M of Mg is 24.3 g/mol

© Brooks/Cole, Cengage Learning

Formula Weight

The **Formula Weight** of a substance is the sum of the atomic weights of each atom in its chemical formula.

H₂SO₄

```
FW = 2(AW \text{ of } H) + (AW \text{ of } S) + 4 (AW \text{ of } O)
= 2(1.0 \text{ u}) + (32.0 \text{ u}) + 4 (16.0)
= 98.0 \text{ u}
```

One H₂SO₄ molecule weighs 98.0 u; 1 mol H₂SO₄ weighs 98.0 g

 $M ext{ of } H_2SO_4 ext{ is } 98.0 ext{ g/mol}$

