Chem 111

Lecture 8

Announcements

- Oct 4th is your first exam. Less than 2 weeks.
- Practice Exams:

http://courses.umass.edu/chem111-bbotch/ExamInfo.html

Our TA: Breanne Holmes
 →Office Hours Monday,1:00-2:30pm in the CRC

Homework

- Continue Reading Chapter 3
- OWL online homework.

Recap

- Hydrates $Coll_2 \cdot bH_2O$
- Practiced a few problems
- Chemical Equations $A + B \rightarrow C$
- Balancing Chemical Equations
- Combustion Reactions

Let's Practice

Write the balanced chemical equation for the reaction that occurs when ethanol, $C_2H_5OH(I)$, is burned in air.

$$C_2 H_5 OH(k) + 30_2(2) \longrightarrow 2(0_2(2)) + 3H_2 O(k)$$

C:
$$2$$

H: 6
O: $1 \times 2 = 2$
 $2 \times 3 = 5$
 $4 + 3 = 7$
 $1 \times 2 = 3$
 $4 + 3 = 7$
 $1 \times 2 = 7$

Chemical Equilibrium

Chemical Equilibrium – occurs when opposing reactions are proceeding at the same rate.

Solutions

Solution – is a homogeneous mixture of two or more substances.

Solvent - is the component that is present in greater quantity.

Solute - is the component that is present in lesser quantity. It is said to be dissolved in the solvent.

Aqueous Solutions – Solutions where water is the solvent.

Aqueous Solutions

Electrolyte – a substance whose aqueous solutions contains ions and hence conduct electricity.

Non electrolyte - a substance that does not form ions in solution.

| **b** | **b** | **c** | **4**

Ionic Compounds in Water

Water is a polar solvent.

Ionic Compounds in Water

Metathesis Reactions

From the Greek, "To Transpose"

$$AX + BY \rightarrow AY + BX$$

$$AgNO_{3}(aq) + KCI(aq) \rightarrow (AgCI(s)) + KNO_{3}(aq)$$

$$AgNO_{3}(aq) \rightarrow Agt(aq) + NO_{3}(aq)$$

$$KCI(aq) \rightarrow Kt(aq) + CI(aq)$$

For a metathesis reaction to occur, ions must be removed from the solution.

- 1. The formation of an insoluble solid (a precipitate).
- 2. The formation of either a soluble weak electrolyte or soluble nonelectrolyte. Acid Base $R \times NS$
- 3. The formation of a gas.

ju e

Complete Ionic Equation

 $Mg(NO_3)_2(aq) + 2NaOH(aq) \rightarrow Mg(OH)_2(s) + 2NaNO_3(aq)$

 $Mg^{2+}(aq) + 2NO_3^{-}(aq) + 2Na^{+}(aq) + 2OH^{-}(aq)$

 \rightarrow Mg(OH)₂(s) + 2Na + (aq) + 2NO₃ - (aq)

Spectator lons – Are ions that appear in identical forms among both the reactants and the products.

Net Ionic Equation

When spectator ions are omitted from the complete ionic equation, we are left with the net ionic equation.

Complete: $Mg^{2+}(aq) + 2NO_3^{-}(aq) + 2Na^{+}(aq) + 2OH^{-}(aq)$ $\rightarrow Mg(OH)_2(s) + 2Na^{+}(aq) + 2NO_3^{-}(aq)$ Net Ionic:

 $Mg^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mg(OH)_{2}(s)$

Let's Practice

Write the net ionic equations for the reactions that occur when solutions of the following compounds are mixed.

a) KOH and $Co(NO_3)_2$

b) NaCl and $(NH_4)_2SO_4$

Acids

Arrhenius's definition: when dissolved in water increases H⁺ concentration of water.

Brønsted's definition: proton donor

Examples: HCI, HNO₃, H₂SO₄, CH₃CO₂H

 $\begin{array}{rcl} \mathsf{HCI}(aq) + \mathsf{H}_2\mathsf{O}(l) \rightarrow \mathsf{H}_3\mathsf{O}^+(aq) + & \mathsf{CI}^-(aq) \\ \mathsf{HCI}(aq) & \rightarrow \mathsf{H}^+(aq) + & \mathsf{CI}^-(aq) \end{array}$

Monoprotic – yield one H atom per molecule of acid. **Diprotic** - yield two H atoms per molecule of acid.

```
\begin{array}{rl} \mathsf{H}_2\mathsf{SO}_4(aq) \rightarrow \mathsf{H}^+(aq) &+ & \mathsf{HSO}_4^-(aq) \\ \mathsf{HSO}_4^-(aq) &\leftrightarrows \mathsf{H}^+(aq) &+ & \mathsf{SO}_4^{-2-}(aq) \end{array}
```

Bases

Arrhenius's definition: when dissolved in water increases OHconcentration of water.

Brønsted's definition: proton acceptor

```
Examples: NaOH, KOH, NH<sub>3</sub>
```

NaOH $(aq) \rightarrow Na^+(aq) + OH^-(aq)$

 $NH_3(aq) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq)$

Amphiprotic – can react as either an acid or a base.

