Chem 241

Lecture 2

UMas 🖞 🍐 🍐 🍐 🌢 🗢 🗗 📖 🛓 🖣 🕨 Initiative

Homework Chapter 1

- Exercise: 2, 3, 5, 11, 12, 13, 15, 17, 20
- Problems: 10, 11, 12

How the elements were formed

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{2m_e}{\hbar^2} (E - V)\psi = 0$$

- V = potential energy of electron in the field of the nucleus
- E is the total energy

Probability Density

 $\int \psi^2 \; d\tau = 1$

Probability density, ψ^2

Wavefunction, ψ

Probability density

Figure 1-6 Shriver & Atkins Inorganic Chemistry, Fourth Edition 0 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Orbitals

- Atomic orbitals defined by the wavefunction of an electron in a atom.
- Quantum Numbers simplification of those waveforms
- n: principle q#
- I: angular orbital momentum q#
- m_l: magnetic q#

Q#

Spin

- s = intrinsic angular spin.
- For an electron s=1/2 always
- m_s = spin magnetic q#
- For and electron $m_s = +1/2$ or -1/2

The for q# n, l, m_l , m_s are used to characterize a electron in an atom

Polar Coordinates

Radial and Angular Functions

 $\psi_{nlm_i} = R_{nl}(r)Y(\theta,\phi)$

Table 1.2 Hyd	rogenic orbitals		Table 1.2 Hydrogenic orbitals				
(a) Radial wave $R_{nl}(r) = f(r)(Z/r)$	functions $(a_0)^{3/2} e^{-\rho/2}$		(b) Angular wavefunctions $Y_{l,m_l}(\theta, \phi) = (1/4\pi)^{1/2} y(\theta, \phi)$				
where a_0 is the Bohr radius (53 pm) and $ ho = 2Zr/na_0$			1	m,	$\mathbf{v}(\theta, \phi)$		
п	L	f(r)			y (0, ψ)		
1 2 2 3 3	0 0 1 0 1	2 $(1/2\sqrt{2}(2-\rho))$ $(1/2\sqrt{6})\rho$ $(1/9\sqrt{3})(6-6\rho+\rho^2)$ $(1/9\sqrt{6})(4-\rho)\rho$	0 1 1 2 2	$\begin{array}{c} 0 \\ 0 \\ \pm 1 \\ 0 \\ \pm 1 \\ + 2 \end{array}$	1 $3^{1/2} \cos \theta$ $3(3/2)^{1/2} \sin \theta e^{\pm i\phi}$ $(5/4)^{1/2} (3\cos^2 \theta - 1)$ $3(15/4)^{1/2} \cos \theta \sin \theta e^{\pm i\phi}$ $(15/2)^{1/2} e^{\sin^2 \theta} e^{\pm 2i\phi}$		
3	2	$(1/9\sqrt{3}0)\rho^2$	2	±2	$(15/8)^{1/2}\sin^2\theta e^{\pm 2i\phi}$		

Table 1-2 part 1

Shriver & Atkins Inorganic Chemistry, Fourth Edition
© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Table 1-2 part 2

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong

Radial Function graphed

of nodes = n-l-1

20

10

0

200 400

(pm)

20

10

200

400 600 800

(pm)

l = 2

200 400 600 800 1000 1200 1400

(pm)

 $\times 10^{-4}$

Angular function graphed

nodal planes = I

Figure 1-16 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

d-orbitals

Figure 1-17 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Figure 1-18 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Whole wavefunction graphed

	s (I=0)	p (/=1)				d (I=2)				f (I=3)						
	m=0	m=0	m=	±1	m=0	m=	±1	m=	±2	m=0	m=	±1	m=	±2	m=	<u>±</u> 3
	s	P _z	Px	Py	d _z 2	d _{xz}	d _{yz}	d _{xy}	d _x 2.y2	f _z 3						
n=1																
n=2	•															
n=3	•	2			-	*	8									
n=4	•	2	•		-	*	2		••	\$	*	*	*	*	•	
n=5	9	2	••	۲	-	*	2		••							
n=6	0	2	••		•••				•••							
n=7	0	••••														

Multi electron atom

- Consider He 1s²
- Pauli Exclusion Principle: No more than two electrons may occupy a single orbital. If two do, then their spins must be paired.
- Where does the next electron go since in hydrogenic atom 2s and 2p have the same energy?

Effective nuclear charge

- $Z_{eff} = Z \sigma$
- σ : Is the shielding constant

Figure 1-14 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M. T. Weller, and F. A. Armstrong

ns<np<nd<nf

Table 1.3 Effective nuclear charges, Z _{eff}											
	н							He			
Ζ	1							2			
1 <i>s</i>	1.00							1.69			
	Li	Be	В	С	N	0	F	Ne			
Ζ	3	4	5	6	7	8	9	10			
1 <i>s</i>	2.69	3.68	4.68	5.67	6.66	7.66	8.65	9.64			
2 <i>s</i>	1.28	1.91	2.58	3.22	3.85	4.49	5.13	5.76			
2 <i>p</i>			2.42	3.14	3.83	4.45	5.10	5.76			
	Na	Mg	Al	Si	Р	S	Cl	Ar			
Ζ	11	12	13	14	15	16	17	18			
1 <i>s</i>	10.63	11.61	12.59	13.57	14.56	15.54	16.52	17.51			
2 <i>s</i>	6.57	7.39	8.21	9.02	9.82	10.63	11.43	12.23			
2p	6.80	7.83	8.96	9.94	10.96	11.98	12.99	14.01			
3s	2.51	3.31	4.12	4.90	5.64	6.37	7.07	7.76			
3р			4.07	4.29	4.89	5.48	6.12	6.76			

Table 1-3

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Figure 1-21 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D.F.Shriver, P.W.Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong

Building up

 Hund's Rule: every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.

- He 1s²
- C 1s²2s²2p² or [He]2s²2p²
- V [Ar]4s²3d³
- Cr [Ar] 4s¹3d⁵ not 4s²3d⁴

Periodic Table... again

Ionic Radius

Table	1.4 Ato	mic radi	i, <i>r</i> /pm*	6		
Li	Be	в	с	N	0	F
157	112	88	77	74	66	64
Na	Mg	Al	Si	Р	s	CL
191	160	143	118	110	104	99
к	Ca	Ga	Ge	As	Se	Br
235	197	153	122	121	117	114
Rb	Sr	In	Sn	Sb	Те	1
250	215	167	158	141	137	133
Cs	Ba	π	Pb	Bi		
272	224	171	175	182		

Table 1.	5 Ionic radii, r/	′pm*					
Li ⁺	Be ²⁺	B ³⁺			N ³⁻	0 ²⁻	F
59(4)	27(4)	11(4)			146	135(2)	128(2)
76(6)						138(4)	131(4)
						140(6)	133(6)
						142(8)	
Na ⁺	Mg ²⁺	Al ³⁺			P ³⁻	S ²⁻	Cl−
99(4)	49(4)	39(4)			212	184(6)	181(6)
102(6)	72(6)	53(6)					
118(8)	89(8)						
K +	Ca ²⁺	Ga ³⁺			As ³⁻	Se ²⁻	Br
138(6)	100(6)	62(6)			222	198(6)	196(6)
151(8)	112(8)						
159(10)	123(10)						
160(12)	134(12)						
Rb ⁺	Sr ²⁺	In ³⁺	Sn ²⁺	Sn ⁴⁺		Te ²⁻	I-
152(6)	118(6)	79(6)	83(6)	69(6)		221(6)	220(6)
160(8)	125(8)	92(8)	93(8)				
173(12)	144(12)						
Cs ⁺	Ba ²⁺	Tl ³⁺					
167(6)	149(6)	88(6)					
174(8)	156(8)	Tl+					
188(12)	175(12)	164(6)					

*Numbers in parentheses are the coordination number of the ion. For more values, see Resource section 1.

Table 1-5

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Ionization energy

- Ease in which an electron can be removed
- $A(g) \rightarrow A^+(g) + e^-(g)$
- $I = E(A^+) E(A)$
- First Ionization Energy, I₁
- Second Ionization, I₂
- Energy is determined by the HOAO

Ionization Energy

Table 1.6 First and second (and some higher) ionization energies of the elements, $I/(kJ \text{ mol}^{-1})$										
н							Не			
1312							2373			
							5259			
Li	Ве	в	с	N	0	F	Ne			
513	899	801	1086	1402	1314	1681	2080			
7297	1757	2426	2352	2855	3386	3375	3952			
11809	14844	3660	4619	4577	5300	6050	6122			
		25018								
Na	Mg	Al	Si	Р	S	cı	Ar			
495	737	577	786	1011	1000	1251	1520			
4562	1476	1816	1577	1903	2251	2296	2665			
6911	7732	2744	3231	2911	3361	3826	3928			
		11574								
к	Ca	Ga	Ge	As	Se	Br	Kr			
419	589	579	762	947	941	1139	1351			
3051	1145	1979	1537	1798	2044	2103	3314			
4410	4910	2963	3302	2734	2974	3500	3565			
Rb	Sr	In	Sn	Sb	Те	1	Xe			
403	549	558	708	834	869	1008	1170			
2632	1064	1821	1412	1794	1795	1846	2045			
3900	4210	2704	2943	2443	2698	3197	3097			
Cs	Ва	τι	Pb	Bi	Po	At	Rn			
375	502	590	716	704	812	926	1036			
2420	965	1971	1450	1610	1800	1600				
3400	3619	2878	3080	2466	2700	2900				

 $I \propto \frac{Z_{eff}^2}{n^2}$

Table 1-6

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong

Electron affinity

- Ease in which an electron can be added
- $A(g) + e^{-}(g) \rightarrow A^{-}(g)$
- $E_a = E(A) E(A^-)$
- Energy is determined by the LUAO

Table	Table 1.7 Electron affinities of the main-group elements, $E_a/(kJ mol^{-1})^*$										
н							Не				
72							-48				
Li	Ве	в	с	N	0	F	Ne				
60	\leq 0	27	122	-8	141	328	-116				
					-780						
Na	Mg	Al	Si	Р	S	Cl	Ar				
53	≤ 0	43	134	72	200	349	-96				
					-492						
к	Ca	Ga	Ge	As	Se	Br	Kr				
48	2	29	116	78	195	325	-96				
Rb	Sr	In	Sn	Sb	Те	1	Xe				
47	5	29	116	103	190	295	-77				

Electronegativity

- The power of an atom to attract electrons when it is part of a compound
- Pauling χ_p : based on bond formation
- Mulliken $\chi_m = 1/2 (I + E_a)$
- Allred-Rochow $\chi_{AR} = 0.77 + -$

$$\frac{35.90 \, Z_{eff}}{(\frac{r}{pm})^2}$$

EN

Table 1.8	Pauling χ_{P} ,	Mulliken, χ _M ,	and Allred-	Rochow, XAR	, electronega	ativities	
Н							He
2.20							5.5
3.06							
2.20							
Li	Ве	В	с	N	0	F	Ne
0.98	1.57	2.04	2.55	3.04	3.44	3.98	
1.28	1.99	1.83	2.67	3.08	3.22	4.43	4.60
0.97	1.47	2.01	2.50	3.07	3.50	4.10	5.10
Na	Mg	Al	Si	Р	S	Cl	Ar
0.93	1.31	1.61	1.90	2.19	2.58	3.16	
1.21	1.63	1.37	2.03	2.39	2.65	3.54	3.36
1.01	1.23	1.47	1.74	2.06	2.44	2.83	3.30
к	Ca	Ga	Ge	As	Se	Br	Kr
0.82	1.00	1.81	2.01	2.18	2.55	2.96	3.0
1.03	1.30	1.34	1.95	2.26	2.51	3.24	2.98
0.91	1.04	1.82	2.02	2.20	2.48	2.74	3.10
Rb	Sr	In	Sn	Sb	Те	I	Xe
0.82	0.95	1.78	1.96	2.05	2.10	2.66	2.6
0.99	1.21	1.30	1.83	2.06	2.34	2.88	2.59
0.89	0.99	1.49	1.72	1.82	2.01	2.21	2.40
Cs	Ва	Tl	Pb	Bi			
0.79	0.89	2.04	2.33	2.02			
0.70	0.90	1.80	1.90	1.90			
0.86	0.97	1.44	1.55	1.67			

Polarizabilty

Ability to have its electron field distorted by another field

Fajan's Rules

- \rightarrow Small, highly charged cations have polarizing ability.
- \rightarrow Large, highly charged anions are easily polarized.
- Cations that do not have noble-gas config. Are easily polarized.

