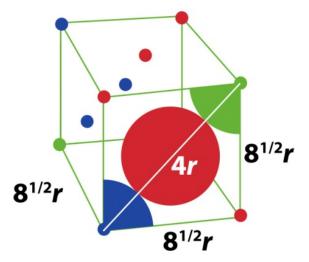
Chem 241

Lecture 20

UMas 🖞 🍐 🍐 🍐 🍐 🗁 🗗 ... 🛓 🖣 🕨 Initiative

Announcement

March 26 \rightarrow Second Exam

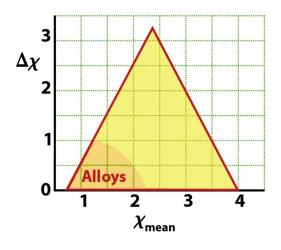

Recap

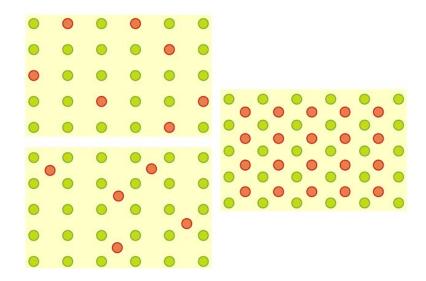
Ellingham Diagram Inorganic Solids Unit Cell Fractional Coordinates Packing

Inorganic Solids

- Atoms entirely within the unit cell (such as the center of a bcc cell) count as one atom.
- Atoms centered in the face of a unit cell (such as the faces in an fcc cell) count as one-half atom.
- Atoms on an edge of the unit cell count as one-quarter atom.
- Atoms at the corners of a cubic, tetragonal, or orthorhombic cell count as one-eighth of an atom.

26% of the volume of a close packed structure is space.




Inorganic Solids

An **alloy** is a blend of metallic elements prepared by mixing the molten components and cooling to produce a solid that has metallic properties.

-Typically form between electropositive metals that have similar electronegativities.

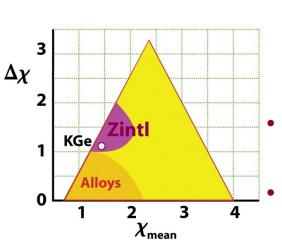
-Solid solutions may be substitutional or intersticial.

Substitutional Solid Solutions

Substitutional solid solutions typically form when:

- 1. The metals have similar size; the Atomic radii of the elements is within ~ 15%
- 2. The crystal structures of the pure metals are the same
- **3**. Electronegativity is similar.

Interstitial Solid Solutions


- Formed between metals and smaller atoms (that fit in the holes).

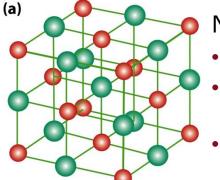
- They can be stoichiometric substances like WC or randomly distributed non-stoichiometric compounds.

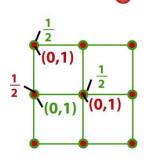
- Holes determine what can og in the open sapeces

Intermetallic compounds

- When liquid mixtures cool, they sometimes form phases of stoichiometric composition with definite structures.
- Examples include MgZn₂, Cu₃Au, Na₅Zn₂₁ etc.
- Often involve elements with a difference in electronegativity (Zintl phases).
- They are in the gray area between metals and ionic solids. They are brittle like ionic materials, but have a luster like metals.

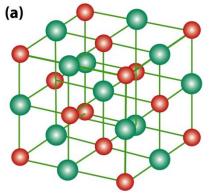
Ionic solids


• Many ionic solids adopt one of several prototypical lattices.

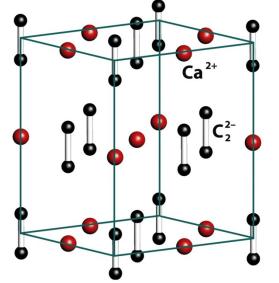

• These lattices can be viewed as having a close-packed structure (ccp or hcp) in one ion, usually the largest, with the smaller ion occupying Oh or Td holes.

• Repulsions between ions of the same charge, generally expand the lattice from a close packed arrangement

Rock Salt

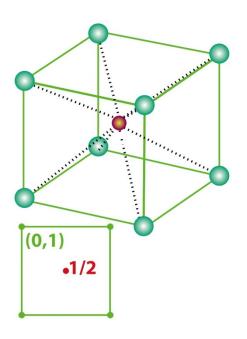


- NaCl
- Can be viewed as ccp in Na⁺ withCl⁻ in all the Oh holes.
- Has 6,6-coordination; the cation and anion have 6 nearest neighbors, respectively.
- Visualize the lattice:
 - The CI- in the center in entirely within the unit cell=1
 - It has 6 nearest neighbors, all Na+ (first coordination sphere) that occupy faces, (6/2)=3
 - It has 12 CI- in the second coordination sphere that occupy edges, 12/4 = 3
 - It has 8 Na+ in the third coordination sphere that occupy corners, 8/8 = 1
 - There are 4 CI- in the unit cell (ccp) and 4 Na+, the stoichiomentry is 1:1, formula unit = NaCI and Z = 4



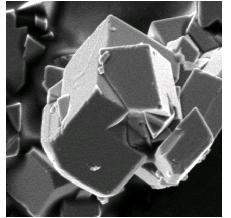
Rock Salt

KBr, AgCI, AgBr, CaO, FeO, SnAs


Many other 1:1 compounds share this structure \rightarrow [Co(NH₃)₃][TICI₆]

CaC₂, CsO, KCN, FeS₂

CsCl Structure

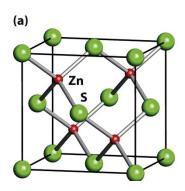


Similar to the bcc lattice adopted by W, **not** close-packed

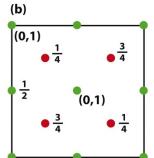
Primitive structure with alternative atom in the hole

Can be viewed as interlocking cubic cells of Cs⁺ and of Cl-.

There are 8 CI- ions at corners of the cubic unit cell 8/8 = 1 CI- per unit cell

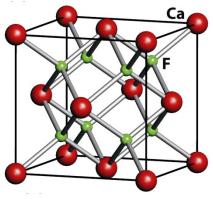


There is one Cs^+ in the center, coordinated to the 8 Cl-Formla unit = CsCl, stoichiometry is 1:1, Z = 1.


8,8-coordination

ZnS

- Sphalerite/ Zinc-blende
- Can be viewed as ccp in S²⁻ with Zn²⁺ in half the Td holes.
- Since all the Td holes are completely contained within a single unit cell, all 4 Zn ions count in the unit cell
- There are two types of S anions, those in faces, 6/2 = 3
- And those in corners, 8/8 = 1.
- The stoichiometry is 1:1; Z = 4

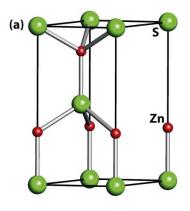


 $(1) \qquad \qquad \bullet \frac{1}{4}$

• 4,4-coordination

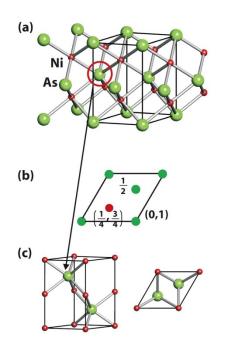
Fluorite Structure

- Can be viewed as ccp in one ion with the other in all the T_d holes. In the case of fluorite, this would be ccp in Ca²⁺ with F- in all the T_d holes. (Note anions not close packed, cations are.)
- Since there are twice as many Td holes in a close packed lattice (8) than there are spheres (4), the stoichiometry is 1:2.
- The formula unit is $CaF_2 Z = 4$.
- 8,4-coordination.
- In anti-fluorite, the positions of the cations and anions are reversed. *E.g.*, Li₂O. Here the lattice is ccp in O²⁻ with Li⁺ in all the Td holes.
- 4,8-coordination

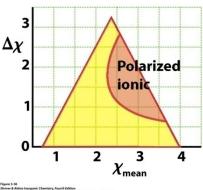

Wurtzite

Wurtzite (another polymorph of ZnS)

- Can be viewed as hcp in S^{2-} with Zn^{2+} in $\frac{1}{2}$ the Td holes.
- Stoichiometry = 1:1
- Formula unit ZnS, Z = 2
- 4,4-coordination

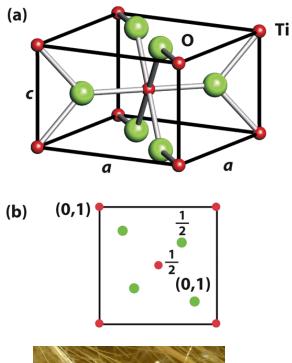


(0,1)


 $\frac{7}{8}$

(b) 3 8

Nickel Arsenide

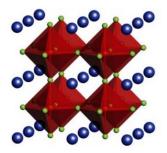


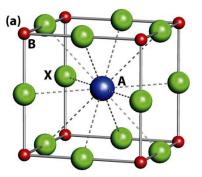
- Can be viewed as expanded hcp in As²⁻ with Ni²⁺ in O_h holes.
- Stoichiometry = 1:1
- Formula unit = NiAs, Z = 2
- 6,6-coordination
- As sites are trigonal prismatic, not Oh
- Often preferred by MX compounds with p ions.
- The possible M-M bonding between atoms in adjacent layers, and is thus common for alloys where the metals interact.

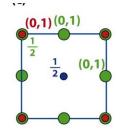
Rutile

 (TiO_2)

- Can be viewed as expanded hcp in Ti⁴⁺ with O²⁻ in ¹/₂ Oh holes
- Very distorted by tendancy of Ti(IV) to adopt Oh geometry.
- Each Ti⁴⁺ is 6-coordinate, thus each O²⁻ is 3coordinate, *i.e.*, 6,3-coordination.
- Stoichiometry is 1:2
- Formula unit is TiO_2 , Z = 2



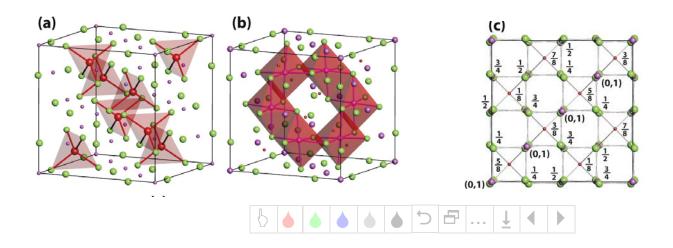

Inorganic solids

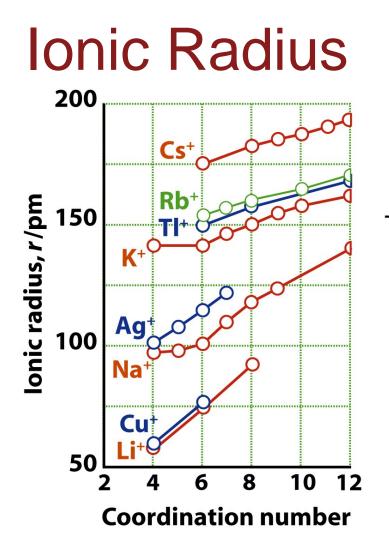

Table 3.4 The crystals						
Crystal structure	Example [*]					
Antifluorite Caesium chloride Fluorite Nickel arsenide Perovskite Rock salt Rutile	 K₂O, K₂S, Li₂O, Na₂O, Na₂Se, Na₂S CsCl, CaS, TISb, CsCN, CuZn CaF₂, UO₂, BaCl₂, HgF₂, PbO₂ NiAs, NiS, FeS, PtSn, CoS CaTiO₃, SrTiO₃, PbZrO₃, LaFeO₃, LiSrH₃, KM NaCl, KBr, RbI, AgCl, AgBr, MgO, CaO, TiO, NiO, SnAs, UC, ScN TiO₂, MnO₂, SnO₂, WO₂, MgF₂, NiF₂ 					
Sphalerite (zinc blende) Spinel	ZnS , CuCl, CdS, HgS, GaP, InAs MgAl₂O ₄ , ZnFe ₂ O ₄ , ZnCr ₂ S ₄	Table 3.5 The relation of structure to the filling of holes				
Wurtzite	ZnS , ZnO, BeO, MnS, AgI, AlN, SiC, NH_4F	Close-packing type	Hole filling	Structure type (exemplar)		
* The substance in bold type	is the one that gives its name to the structure.	Cubic (ccp)	All octahedral All tetrahedral Half tetrahedral	Rock salt (NaCl) Fluorite (CaF ₂) Sphalerite (ZnS)		
		Hexagonal (hcp)	All octahedral	Nickel arsenide (NiAs); with some distortion from perfect hcp		
			Half octahedral	Rutile (TiO ₂); with some distortion from perfect hcp		
			All tetrahedral	No structure exists: tetrahedral holes share faces		
			Half tetrahedral	Wurtzite (ZnS)		

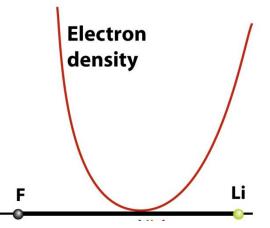
Perovskite, A_aB_bX_n

CaTiO₃, ABX₃

- Idealized as a cube of B cations (1 per unit cell surrounding an A cation completely contained in the center of the unit cell, with X atoms located in the O_h holes on the cube edges (12/4 = 3).
- Usually A is large and has a small charge, B is small and has a large charge.
- The sum of the charges on the cations must = the sum of the charges on the anions, in this case 6.


e.g., for perovskite Ca(II) + Ti(IV). But could be (III) and (III), or even mixed, as in La(Ni_{0.5}Ir_{0.5})O₃.


Often have interesting electrical properties



Spinel

- MgAl₂O₄, AB₂X₄
 - Viewed as ccp array of O²⁻ ions with A occupying 1/8 of T_d holes and B occupying $\frac{1}{2}$ of O_h holes.
 - Normally B is smaller and more highly charged than A
 - Inverse spinels have B atoms in the occupied T_d holes and in ½ the occupied O_h holes. B[AB]O4, where brackets denote the ions in the O_h holes.
 - Sometimes A and B are the same element:
 - Fe(II)Fe(III)₂O₄

Li ⁺	Be ²⁺	B ³⁺			N ³⁻	0 ²⁻	F ⁻
59(4)	27(4)	11(4)			146	135(2)	128(2)
76(6)						138(4)	131(4)
						140(6)	133(6)
						142(8)	
Na ⁺	Mg ²⁺	Al ³⁺			P ³⁻	S ²⁻	Cl-
99(4)	49(4)	39(4)			212	184(6)	181(6)
102(6)	72(6)	53(6)					
118(8)	89(8)						
K+	Ca ²⁺	Ga ³⁺			As ^{3–}	Se ²⁻	Br
138(6)	100(6)	62(6)			222	198(6)	196(6)
151(8)	112(8)						
159(10)	123(10)						
160(12)	134(12)						
Rb ⁺	Sr ²⁺	In ³⁺	Sn ²⁺	Sn ⁴⁺		Te ²⁻	I-
152(6)	118(6)	79(6)	83(6)	69(6)		221(6)	220(6)
160(8)	125(8)	92(8)	93(8)				
173(12)	144(12)						
Cs ⁺	Ba ²⁺	Tl ³⁺					
167(6)	149(6)	88(6)					
174(8)	156(8)	Tl+					
188(12)	175(12)	164(6)					

* Numbers in parentheses are the coordination number of the ion. For more values, see Resource section 1.

