Chem 241

Lecture 31

UMas 🖞 🍐 🍐 🍐 🍐 🗁 🗗 ... 🛓 🖣 🕨 Initiative

Announcement

**Reminder ** Friday, April 23: EXAM 3!!!

Holiday - Patriot's Day Monday April 19

Recap

Mg Ca Sr Ba Ra Hydrides Halides Structures and Solvation Oxides and Hydroxides Carbides **Carbonates and Bicarbonates** Sulfates

Group II: Alkaline earths

- III. Coordination Compounds and Organometallics
 - A. Coordination compounds

 H_2O

- In general, the coordination compounds of GpII are more stable than those of GpI, reflecting the higher charge and increased covalent character of the coordinate bonds.
- 2. Classified as hard acids, the most stable complexes are formed with polydentate charged ligands such as EDTA.

 $K_{\rm f} M({\rm EDTA}): {\rm Ca}^{2+} > {\rm Mg}^{2+} > {\rm Sr}^{2+} > {\rm Ba}^{2+}$

the Mg(EDTA) complex has CN = 7, with one water molecule, and the Ca complex is either 7 or 8 coordinate with 1 - 2 aqua ligands.

3. Only Be forms stable complexes with simple ligands (*e.g.*, unidentate ligands).

Organometallics

- 1. Be
 - Be organometallics are pyrophoric, and unstable in water. Can be made by transmetallation of Be metal with HgR₂, reaction of BeCl₂ with RLi or with Grignard reagents, RMgCl.
 - Structures are similar to hydrides, polymeric with 3c,2e bonds in solid, dimers with large R, CN=2 only in vapor or with large R.
- 2. Mg
 - Grignard reagents are important in organic synthesis; serve as a source of R-.
 - Synthesis: Mg(s) + RBr → RMgBr; usually requires activation to overcome passivating oxide layer. (a little I₂ or Br₂ can be added to make the soluble halide which dissolves and presents a fresh reactive surface.)
 - The structure of a Grignard reagent is complicated.
 - CN = 2 only exists in solution for large R groups. Usually tetrahedral solvate of Mg²⁺ with R- and CI- counterions
- 3. Ca, Sr, Ba form analogs of Grignards that are ionic and unstable.

Homework

- Finish Reading Chapter 11
- Start Reading Chapter 12
- Exercises Chapter 11:

2, 3, 5, 6, 7, 9, 11

General features of the Elements

- A. Electron configuration ns²np¹. First group in "p-block."
 - 1. all have compounds with +3 oxidation state.
 - 2. the heavier congeners also exhibit the +1 oxidaiton state, which is the most common ox. st. for TI. (an example of the inert pair effect).
 - 3. Neutral compounds are electron deficient and thus good Lewis acids.
- B. Metal character increases top to bottom. Boron is a nonmetal; the rest (AI, Ga, In, TI) are metals. Al has some properties that are like metalloids (*e.g.*, amphoteric oxide).

1. Transition from covalent compound to ionic compounds can be rationalized in terms of increase in atomic radius and decrease in IE down the group.

• 2. However, Ga is more electronegative than AI because the intervening 3d series is poorly shielding.

Group 13

Table 12.1 Selected properties of the elements					
	В	Al	Ga	In	τι
Covalent radius/pm	80	125	125	150	155
Metallic radius/pm		143	141	166	171
Ionic radius, <i>r</i> (M ³⁺)/pm	27	53	62	94	98
Melting point/°C	2300	660	30	157	304
Boiling point/°C	3930	2470	2400	2000	1460
First ionization energy, $I_1/(kJ mol^{-1})$	799	577	577	556	590
Second ionization energy, $I_2/(kJ mol^{-1})$	2427	1817	1979	1821	1971
Third ionization energy, $I_3/(kJ mol^{-1})$	3660	2745	2963	2704	2878
Electron affinity, $E_a/(kJ mol^{-1})$	26.7	42.5	28.9	28.9	
Pauling electronegativity	2.0	1.5	1.6	1.7	1.8
$E^{\circ}(M^{3+},M)/V$	-0.89	-1.68	-0.53	-0.34	+1.26

Table 12-1 Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong

Boron

 A. Elemental Boron exists in several hard and refractory allotropes. Three (four inc. a high pressure phase) solid phases for which crystal structures are available contain icosahedral (20 faces) B₁₂ unit.

- B. Boron and Si have a diagonal relationship
 - 1. B and Si have acidic oxides
 - 2. B and Si form many polymeric oxides
 - 3. B and Si have flammable gaseous covalent hydrides.

Group 13.

- C. Boron occurs in nature as borax, Na₂B₄O₅(OH)₄
 ·8H₂O, and kernite, Na₂B₄O₅(OH)₄ · 2H₂O.
 - 1. isolation from minerals is by conversion to boric acid, B(OH)₃, then to boron oxide, B₂O₃. The oxide is reduced with Mg, and washed with alkali and then HF.
 - 2. Highly pure B is made by reduction of BBr₃ vapor with H₂:

 $2 BBr_3 + 3 H_2 \rightarrow B + 6 HBr$

- D. Uses
 - 1. Borosilicate glass & fiberglass.
 - 2. Borax is used as a water softener, cleaner, mild pesticide
 - 3. Boric acid is a mild antiseptic
 - 4. Essential nutrient in plants

Compounds of Boron

- 1. Hydrides. Boron forms a large number of neutral and anionic hydrides with cage-like structures called Boranes.
 - a. boranes are air-sensitive compounds, some of which ignite explosively, that burn with a green flame.
 - The observation of a green flame associated with a Soviet rocket launch in the 1950s spurred a great deal of research on boranes and at least one Nobel Prize (H.C. Brown, Purdue University).

 $B_2H_6 + 3O_2 \rightarrow 2 B(OH)_3$

• Synthesis: Simplest is diborane (a gas at STP):

 $3 \text{ LiBH}_4 + 4 \text{ BF}_3 \rightarrow 2 \text{ B}_2\text{H}_6 + 3 \text{ LiBF}_4$

- Diborane decomposes very slowly at RT and forms higher boron hydrides and a nonvolatile yellow solid consisting of $B_{10}H_{14}$ and polymer, BH_n .

Boranes

- b. first prepared by Alfred Stock (German) in 1912
 - Stock prepared 6 different boron hydrides and had evidence for a 7th.
- c. Two classes
 - B_nH_{n+4} and B_nH_{n+6} (less stable)
 - e.g., diborane, pentaborane(9), B₅H₉
 - B_nH_{n+6} (less stable)
 - e.g., pentaborane(11), B₅H₁₁;
 - tetraborane(10), B₄H₁₀

d. All are colorless and diamagnetic; low mol. Wt. are gases (e.g., diborane) and are more reactive than the higher Mol. Wt (B_5H_9 is a liquid; $B_{10}H_{14}$ is a sublimable solid).

e. hydrolysed by water (particularly low MW).

 $B_2H_6 + 6H_2O \rightarrow 2 B(OH)_3 + 6 H_2$

Lewis acidity

Lewis acidity

Two cleavage patterns:

symmetric

products are isoelectronic with hydrocarbons

Reactions

н

B

5 AI(BH₄)₃

Zr(BH_₄)_₄

6

H

В

- g. hydroboration (addition of HB across a multiple bond) H₃B-OR₂ + H₂C=CH₂ \rightarrow CH₃CH₂BH₂ + R₂O useful in the preparation of organoboranes
- h. BH₄-, tetrahydroborate
 - $B_2H_6 + 2 \text{ LiH} \rightarrow 2 \text{ LiBH}_4$
 - Can be viewed as a Lewis acid/base complex between BH_{3} and H-.
 - Isoelectronic with CH_4 and NH_4^+ Basic \rightarrow neutral \rightarrow acidic
 - Useful as a source of H- or as a reducing agent while unstable in water, kinetics of hydrolysis are slow under basic conditions.
 - Reduces Ni(II) or Cu(II) to the metal

5日... ↓ ▲ ▶

Halides

Halides

- a. Preparation: With the exception of BI₃, prepared by direct reaction of the elements.
 - Preferred method for BF₃:
 - $B_2O_3 + 3 CaF_2 + 6 H_2SO_4 \rightarrow 2 BF_3 + 3 [H_3O] \{HSO_4] + 3 CaSO_4$
- b. Structure: Trigonal planar (D_{3h})
- c. BF_3 and BCI_3 are gases, BBr_3 is a liquid, BI_3 is a solid.
- d. Electron deficient, and thus good Lewis acids.
- e. Proteolysis occurs in protic solvents (water, alcohols, etc) BCl₃ + 3 H₂O → B(OH)₃ + 3 HCI
- f. [BF₄]⁻ is a good anion
- g. Useful for making boron alkyls:
 - $BF_3 + 3 MeMgI \rightarrow B(Me)_3 + MgX_2;$
 - $BF_3 + 4MeLi \rightarrow Li[BMe_4] + 3LiF$

Boron-oxygen compounds

a. B_2O_3 is the most important oxide. prepared by dehydration of boric acid Δ 2 B(OH)₃ \rightarrow B₂O₃ + 3 H₂O

b. Boric acid is an acid because of its Lewis acidity: $B(OH)_3 + 2H_2O \Rightarrow [H_2O-B(OH)_3] \Rightarrow H_3O^+ + B(OH)_4^$ $pK_a = 9.2$

c. Polyborates

d. Fusion of $Na[B(OH)_4)$ with silica (SiO₂) leads to the formation of borosilicate glasses (e.g., Pyrex)

Nitrogen compounds

- a. BN, boron nitride
 - Synthesis:

 $B_2O_3 + NH_3 \rightarrow 2BN + 3H_2O_{1200 \text{ C}}$

Structure: planar sheets (like graphite, but with sheets stacked directly over each other).

electrical insulator, colorless, slippery material used as lubricant.

at high T and P (60 kbar; 2000 C) forms cubic crystalline analog of diamond.

Borazines

- Borazines (isoelectronic with benzene)
 synthesis and structure
 - $3 B_2H_6 + 6 NH_3 \rightarrow B_3N_3H_6$

 $3 \text{ NH}_4\text{CI} + \text{BCI}_3 \rightarrow \text{B}_3\text{N}_3\text{H}_3\text{CI}_3$

Boron clusters

- a. Metal Borides
 - 1. synthesis: Direct reaction of elements

 $Ca + 6B \rightarrow CaB_6$

• 2. Structures

- Metal rich contain B^{3-} anions, M_2B
- Hexagonal rings of B, MB₂, mostly with electropositive metals (Mg, AI, early d-block) MgB₂ becomes supercond., T_c = 38K
- Boron-rich, MB₆ (Na, K, Ca, Ba),

MB₁₂ (e.g., f-block)

Group 13

2-

closo-[B₆H₆]²⁻

nido-B₅H₉

н

B

н

- b. Higher Boranes and Borohydrides
 - Wade's Rules

-apply to deltahedra (polyhedra made up of triangular faces -can be used to predict the general shape of molecular and anionic boranes from the formula.

-Step 1. Determine the number of skeletal electrons

B-H groups contribute 2 skeletal electrons (there are 4 e-, but the 2 e- in the B-H bond are not skeletal electrons.) Additional H atoms contribute 1 e- each.

(In B_4H_{10} there are 4B-H + 6 additional H (8 + 6 = 14 skeletal electrons). Charges count as skeletal e-.

-Step 2. Assign the cluster type. species with the formula $B_nH_n^{2-}$ and n+1 pairs of skeletal electrons have a "**closo**" (cage) structure consisting of a closed deltahedron and no B-H-B 3c, 2e- bonds. (*e.g.*, $B_5H_5^{2-}$, $B_6H_6^{2-}$ and $B_{12}H_{12}^{2-}$).

Clusters with the B_nH_{n+4} and n+2 pairs of e- have the **nido** (nest) structures. Look like closo structures without one vertex, but have B-H-B and B-B bonds.

 $(e.g. B_5H_9, 10 + 4 = 14 (7 pairs, nido structure)$

Group 13

Clusters with the formula, B_nH_{n+6} and n+3 pairs of skeletal electrons have an **arachno** (spider) structure, corresponding to a closo missing two vertices, and must have B-H-B bonds (*e.g.*, B_5H_{11} ; 5 B-H + 6 = 16 skeletal electrons, 8 pairs).

- Can be used to predict reactivity:
 closo < nido < arachno
- Wade's rules work because they describe the population of M.O.s

Synthesis

Pyrolysis of diborane to generate BH_3 , and condensation, sometimes with quench.

Reactions

Reaction with a Lewis base can cleave BH_n group, abstraction of one or more H⁺, and cluster enlargement.

Deprotonations usually occur at B-H-B groups, 3c, 2ebonds, and result in B-B bond formation.

The Brønsted acidity of clusters increases approx. with size.

 $B_4 \ 10_{10} < B_5 10_9 < B_{10} 10_{14}$

Group 13

- c. Metallaboranes and Carboranes
 - One class have M-H bonds (*e.g.*, the intermediates in reductions and hydride formation with BH₄-), but more stable clusters have M-B bonds, and take the postion of a vertex in the cluster.

• Carboranes are derived by substituting BH- vertices with CH, with which it is isoelectronic and isolobal, but reduces the (-) charge by one for each CH. Thus, $B_6H_6^{2-}$ and $B_4C_2H_6$ are isoelectronic, and isostructural, and obey Wade's rules.

Synthesis Carboranes

The C-H protons are mildly acidic, and so can be lithiated and used in synthesis like LiR reagents, where R is a carborane.

 $B_{10}C_2H_{12} + 2 \text{ LiBu} \rightarrow 1, 2-B_{10}C_2H_{10}\text{Li}_2 + 2 C_4H_{10}$

Homework

Finish Reading Chapter 12 Exercise 1, 2, 5, 6, 7, 8, 10, 12, 15

