Chem 241

Lecture 6

UMas 🖞 🍐 🍐 🍐 🌢 🗢 🗗 📖 🛓 🖣 🕨 Initiative

Announcements

March 10th class will be moved

Need a note taker

• MO theory for a homo-dimeric molecule

MOT-Heteronuclear Diatomics

- Differences from Homonuclear case:
 - for $\psi_{bond(1)} = \psi_A + \psi_{B_A} \psi_A$ does not = ψ_B
 - Electrons will be drawn to the more electronegative element . Thus bonding orbitals will have more of that element character and antibonding orbitals will have more AO character from the more electropositive element.
 - As a result of having more A character,
 The molecular orbital will be closer in
 Energy to the AO of A.

Consider CO

Consider HCI

MOT-predicting bond order, bond length and bond strength

5日…

- Consider O₂, O₂⁻, O₂²⁻, O₂⁺
- Bond Order b= ½(bond anti)

$$v_{o-o} = 1555 \text{ cm}^{-1}$$

 $1108 \text{ cm}^{-1} (\text{K}[\text{O}_2^{-7}])$
 $760 \text{ cm}^{-1} (\text{Na}_2[\text{O}_2^{-27}])$
 $1858 \text{ cm}^{-1} ([\text{O}_2^{+7}]\text{AsF}_6)$

MOT of polyatomic molecules

- General rules:
- 1. Molecular orbitals are formed from linear combinations of atomic orbitals with the same symmetry
- 2. The greater the number of nodes in a molecular orbital, the more antibonding and higher in energy it is.
- 3. Interactions between atoms that are not nearest neighbors are weak (bonding or anti-bonding).
- 4. Orbitals constructed from lower energy AOs lie lower in energy.

BeH_2

Diborane

27 Diborane, B₂H₆

Structure 2-27 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Figure 2-32 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M. T. Weller, and F.A. Armstrong

Please look in your book about NH₃, Hypervalence

Figure 2-51 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Acids and Bases

- Bronsted Acids are proton donors. (HCI, HOOCCH₃)
- Bronsted Bases are proton acceptors (OH⁻, R-COO⁻, NH₃ → NH₄⁺)

 $HA(sol) + HSol(l) \iff A^{-}(sol) + H_{2}Sol^{+}(sol)$

$$B(sol) + HSol(l) \iff HB^+(sol) + Sol^-(sol)$$

Major Classes of Bronsted Acid

- Aqua acid
- Hydroxo acid

Oxo acid

H₂O-E-OH₂ ↓ - 2 H⁺ [HO-E-OH]²⁻ ↓ - H⁺ [HO-E=O]³⁻

Lewis Acids and Bases

Lewis acids are electron pair acceptors (electron deficient; BH₃)

▲ 5 **日**

• Lewis bases are electron pair donors.

$[Ag-C_6H_6]^+$ H₃B-NMe₃

- HCO_{3}^{-} [O=C=O + OH⁻]
- SiF_{6}^{2} [SiF₄ + 2 :F⁻]

Group 13

- B(CH₃)₃ + :NH₃ → CH₃B:NH₃ Trend for acidity of BX₃ is: X = F < CI < Br BF₃ has better B-F π-bonding
- AICl₃ is a dimer.

AICl₃ is used as a Lewis acid catalyst (e.g., Freidel-Crafts alkylation)

Group 14

- Elements that can expand their octet are good Lewis acids. (e.g., group 14)
 - $SiF_4 + 2F^- \rightarrow SiF_6^{2-}$
 - Sn(II) is both a Lewis acid and a Lewis base
 SnCl₂ + Cl⁻ → SnCl₃⁻

Sn(IV) is a good Lewis acid

SnCl₄ + 2 Cl⁻ \rightarrow SnCl₆²⁻ Acidity of SnXor SiX₄: F > Cl > Br > I

Structure 4-21 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J. P. Rourke, M. T. Weller, and F.A. Armstrong

Group 15 & 16

- Group 15 Lewis acids include "super acids" which use the Lewis acidity of SbF₅ to form SbF₆⁻ and a "solvated proton" that is acidic enough to protonate hydrocarbons.
- SbF₅ + 2HF → SbF₆⁻ + H₂F⁺ SbF₅ + 2HSO₃F → SbF₅SO₃F⁻ + H₂SO₃F⁺

Sulfur oxides can be Lewis acids or bases: $SO_2 + NR_3 \rightarrow O_2S-NR_3$ Can coordinate to metals via S or O

Lewis Acids and Bases

- $A + : B \rightarrow A B$
- A Lewis acid has a low-lying LUMO;
- A Lewis base has a high-lying HOMO

HSABT

Hard acids tend to bind best to hard bases and vice versa.

Table 4.3 The classification of Lewis acids and bases*			
Hard	Borderline	Soft	
Acids H ⁺ , Li ⁺ , Na ⁺ , K ⁺ Be ²⁺ , Mg ²⁺ , Ca ²⁺ Cr ²⁺ , Cr ³⁺ , Al ³⁺ SO ₃ , BF ₃	Fe ²⁺ , Co ²⁺ , Ni ²⁺ Cu ²⁺ , Zn ²⁺ , Pb ²⁺ SO ₂ , BBr ₃	Cu ⁺ , Au ⁺ , Ag ⁺ , Tl ⁺ , Hg ⁺ Pd ²⁺ , Cd ²⁺ , Pt ²⁺ , Hg ²⁺ BH ₃	
Bases F ⁻ , OH ⁻ , H ₂ O, NH ₃ CO ₃ ²⁻ , NO ₃ ⁻ , O ²⁻ SO ₄ ²⁻ , PO ₄ ³⁻ , ClO ₄ ⁻	NO ₂ ⁻ , SO ₃ ²⁻ , Br ⁻ N ₃ ⁻ , N ₂ C ₆ H ₅ N, SCN ⁻	H ⁻ , R ⁻ , <u>C</u> N ⁻ , CO, I ⁻ SCN ⁻ , R ₃ P, C ₆ H ₅ R ₂ S	

* The underlined element is the site of attachment to which the classification refers.

Hard-hard interactions max. ionic character; soft-soft max. covalency.

HSABT

E and C parameters predict bond enthalpies

•
$$-\Delta H^0(A-B) = E_A E_B + C_A C_B$$

 Strong bonds can be highly ionic, highly covalent, or have contributions from both.

Table 4.4 Drago-Waylandparameters for some acids and bases*			
	Ε	С	
Acids			
Antimony pentachloride	15.1	10.5	
Boron trifluoride	20.2	3.31	
lodine	2.05	2.05	
lodine monochloride	10.4	1.70	
Phenol	8.86	0.90	
Sulfur dioxide	1.88	1.65	
Trichloromethane	6.18	0.32	
Trimethylboron	12.6	3.48	
Bases			
Acetone	2.02	4.67	
Ammonia	2.78	7.08	
Benzene	0.57	1.21	
Dimethylsulfide	0.70	15.26	
Dimethylsulfoxide	2.76	5.83	
Methylamine	2.66	12.00	
<i>p</i> -Dioxane	2.23	4.87	
Pyridine	2.39	13.10	
Trimethylphosphine	17.2	13.40	

* *E* and *C* parameters are often reported to give ΔH in kcal mol⁻¹; we have multiplied both by $\sqrt{(4.184)}$ to obtain ΔH in kJ mol⁻¹.

