Chem 241

Lecture 7

UMas 🖞 🍐 🍐 🍐 🌢 🗢 🗗 📖 🛓 🖣 🕨 Initiative

Recap

- Finished Off MO Theory
- Bronsted Acids and Bases

Lewis Acids and Bases

Lewis acids are electron pair acceptors (electron deficient; BH₃)

▲ 5 日 ... |

• Lewis bases are electron pair donors.

$[Ag-C_6H_6]^+$ H_3B-NMe_3

 SiF_{6}^{2} [SiF₄ + 2 :F⁻]

Group 13

- B(CH₃)₃ + :NH₃ → CH₃B:NH₃ Trend for acidity of BX₃ is: X = F < CI < Br<I BF₃ has better B-F π-bonding
- AICl₃ is a dimer.

AICl₃ is used as a Lewis acid catalyst (e.g., Freidel-Crafts alkylation)

Group 14

- Elements that can expand their octet are good Lewis acids. (e.g., group 14)
 - $SiF_4 + 2F^- \rightarrow SiF_6^{2-}$
 - Sn(II) is both a Lewis acid and a Lewis base
 SnCl₂ + Cl⁻ → SnCl₃⁻

Structure 4-21 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D.F. Shriver, P. W. Atkins, T.L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Sn(IV) is a good Lewis acid

Acidity of SnXor SiX₄: F > CI > Br > I

 $SnCl_4 + 2 Cl^- \rightarrow SnCl_6^{2-}$

Group 15 & 16

- Group 15 Lewis acids include "super acids" which use the Lewis acidity of SbF₅ to form SbF₆⁻ and a "solvated proton" that is acidic enough to protonate hydrocarbons.
- SbF₅ + 2HF → SbF₆⁻ + H₂F⁺ SbF₅ + 2HSO₃F → SbF₅SO₃F⁻ + H₂SO₃F⁺

Sulfur oxides can be Lewis acids or bases: $SO_2 + NR_3 \rightarrow O_2S-NR_3$ Can coordinate to metals via S or O

Lewis Acids and Bases

- $A + : B \rightarrow A B$
- A Lewis acid has a low-lying LUMO;
- A Lewis base has a high-lying HOMO

HSABT

Hard acids tend to bind best to hard bases and vice versa.

Table 4.3 The classification of Lewis acids and bases*			
Hard	Borderline	Soft	
Acids H ⁺ , Li ⁺ , Na ⁺ , K ⁺ Be ²⁺ , Mg ²⁺ , Ca ²⁺ Cr ²⁺ , Cr ³⁺ , Al ³⁺ SO ₃ , BF ₃	Fe ²⁺ , Co ²⁺ , Ni ²⁺ Cu ²⁺ , Zn ²⁺ , Pb ²⁺ SO ₂ , BBr ₃	Cu ⁺ , Au ⁺ , Ag ⁺ , Tl ⁺ , Hg ⁺ Pd ²⁺ , Cd ²⁺ , Pt ²⁺ , Hg ²⁺ BH ₃	
Bases F ⁻ , OH ⁻ , H ₂ O, NH ₃ CO ₃ ²⁻ , NO ₃ ⁻ , O ²⁻ SO ₄ ²⁻ , PO ₄ ³⁻ , ClO ₄ ⁻	NO ₂ ⁻ , SO ₃ ²⁻ , Br ⁻ N ₃ ⁻ , N ₂ C ₆ H ₅ N, SCN ⁻	H ⁻ , R ⁻ , <u>C</u> N ⁻ , CO, I ⁻ SCN ⁻ , R ₃ P, C ₆ H ₅ R ₂ S	

* The underlined element is the site of attachment to which the classification refers.

Hard-hard interactions max. ionic character; soft-soft max. covalency.

HSABT

E and C parameters predict bond enthalpies

•
$$-\Delta H^0(A-B) = E_A E_B + C_A C_B$$

 Strong bonds can be highly ionic, highly covalent, or have contributions from both.

Table 4.4 Drago-Waylandparameters for some acids and bases*			
	Ε	С	
Acids			
Antimony pentachloride	15.1	10.5	
Boron trifluoride	20.2	3.31	
lodine	2.05	2.05	
lodine monochloride	10.4	1.70	
Phenol	8.86	0.90	
Sulfur dioxide	1.88	1.65	
Trichloromethane	6.18	0.32	
Trimethylboron	12.6	3.48	
Bases			
Acetone	2.02	4.67	
Ammonia	2.78	7.08	
Benzene	0.57	1.21	
Dimethylsulfide	0.70	15.26	
Dimethylsulfoxide	2.76	5.83	
Methylamine	2.66	12.00	
<i>p</i> -Dioxane	2.23	4.87	
Pyridine	2.39	13.10	
Trimethylphosphine	17.2	13.40	

* *E* and *C* parameters are often reported to give ΔH in kcal mol⁻¹; we have multiplied both by $\sqrt{(4.184)}$ to obtain ΔH in kJ mol⁻¹.

Homework

- Chapter 4 Exercises: 4, 11, 20, 22
- Start reading Chapter 7

Symmetry

- Learning to recognize symmetry properties of molecules is a great help in qualitative MOT, assigning spectral properties, predicting reactions, etc.
- The line, plane, or point is the **symmetry element**
- The movement is a **symmetry operation**
- Classification of the symmetry properties of a molecule leads to the assignment to one of 32 crystallographic **point groups**, denoted by Schoenflies Symbols.
- In crystallography, crystals are assigned to one of 230 space groups based on the point group + the relationship of the molecules in space.

E, identity

- Every Molecule has a E
- Simply do nothing
- Snap shot technique

C_n, proper rotation

• n-fold rotation (proper rotation, C_n) is a proper rotation if the molecule appears unchanged after rotation by 360⁰ /n

a. H_2O has a 2-fold rotation axis. (n = 2; C_2 axis) one rotation, C_2^{-1} , 360/2 degrees. $C_2^{-2} = E$.

b. Consider BCI_3 has one 3-fold and 3 perpendicular 2-fold rotation axes (C_3 and C_2). The higher order axis becomes the principle rotation axis. C_3^1 = rotation by 120 degrees, C_3^2 = rot. By 240 degrees. C_3^3 = E.

c. Consider $PtCl_4$. Principal rotation axis = C_4 ; 4 perpendicular C_2 axes, in two classes, one set along bonds (C2') and one between bonds (C2'').

Highest order rotational axis is principle axis $C_1 = E$

σ , mirror planes

Reflection (mirror planes, σ)

a. H₂O has two mirror planes. Both contain the principle rotation axis, and are therefore vertical planes (σ_v), one contains the bonds (σ_v ') and one does not (σ_v).

b. BCI_3 has three σ_v and one plane that is perpendicular to the principal rot. axis ($\sigma_h)$

c. $PtCl_4$ has a σ_h and four σ_v of two classes; containing bonds (σ_v) and between bonds (σ_d).

i, Inversion

- Inversion (inversion center)
 - a. SF_6

Figure 7-5 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

S_n, Improper rotation

- Rotation followed by a reflection in the perpendicular plane. (C_n then $\sigma_{\rm h})$
- S₂ = i, S₁ = σ

Flow chart

Figure 7-9

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong

Practice

 NH_3 CO_2 $[Co(en)_3]^{3+}$ (ignore hydrogens) Cyclohexane (conformation) chair $[Fe(H_2O)_6]^{3+}$

Symmetry

- B. Molecules may possess several symmetry elements, the sum of which define their point group.
 - 1. There is a difference between octahedral symmetry and octahedral geometry. Be careful.

