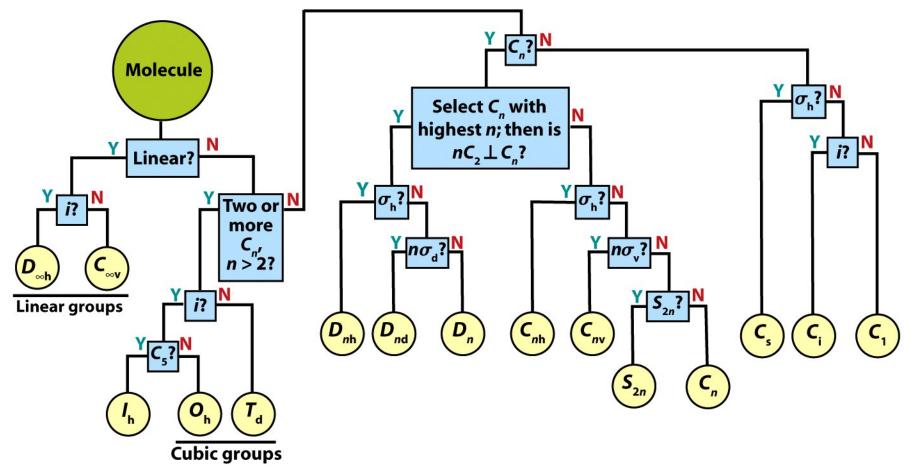
Chem 241

Lecture 8

UMas 🖞 🍐 🍐 🍐 🌢 🗁 🗗 ... 🛓 🖣 🕨 Initiative

Recap

- Lewis Bases
- Hard and soft acid-base theory
- Symmetry E, C_n , σ and i



S_n, Improper rotation

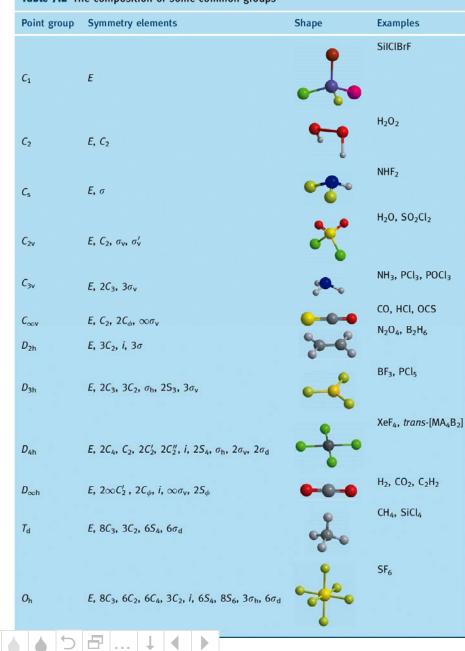
- Rotation followed by a reflection in the perpendicular plane. (C_n then $\sigma_{\rm h})$
- S₂ = i, S₁ = σ

Flow chart

Figure 7-9

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong


Practice

 NH_3 CO_2 $[Fe_4S_4CI_4]^{2-}$ $[Co(en)_3]^{3+}$ (ignore hydrogens) Cyclohexane (conformation) chair $[Fe(H_2O)_6]^{3+}$ Diborane

Symmetry

Table 7.2 The composition of some common groups

Applications

- Molecular Properties.
 - a. Polarity
 - i. a molecule cannot be polar if it has an inversion center.
 - ii. A molecule cannot have an electric dipole moment perpendicular to any mirror plane.
 - iii. A molecule cannot have an electric dipole moment perpendicular to any axis of rotation.
 - b. Chirality
 - i. a molecule cannot be chiral if it has an S_n axis

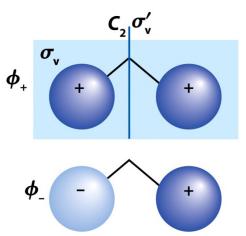
Character Table

Table 7.3 The components of a character tab	Table 7.3	The compon	ents of a	character	table
---	-----------	------------	-----------	-----------	-------

Name of point group*	Symmetry operations <i>R</i> arranged by class (<i>E</i> , <i>C_n</i> , etc.)	Functions	Further functions	Order of group, <i>h</i>
Symmetry species (Γ)	Characters (χ)	Translations and components of dipole moments (<i>x, y, z</i>), of relevance to IR activity	Quadratic functions such as <i>z</i> ² , <i>xy</i> , etc., of relevance to Raman activity	
		Rotations (about axes <i>x, y, z</i>)		

* Schoenflies symbol.

Table 7.4 The C_{2v} character table							
<i>C</i> _{2v}	Ε	<i>C</i> ₂	σ (zx)	σ' (yz)	h = 4		
A ₁	1	1	1	1	Ζ	x^2 , y^2 , z^2	
A ₂	1	1	-1	-1	R_z	ху	
B ₁	1	-1	1	-1	x, <i>R</i> _y	XZ	
B ₂	1	-1	-1	1	y , R _x	ух	


MO polyatomic

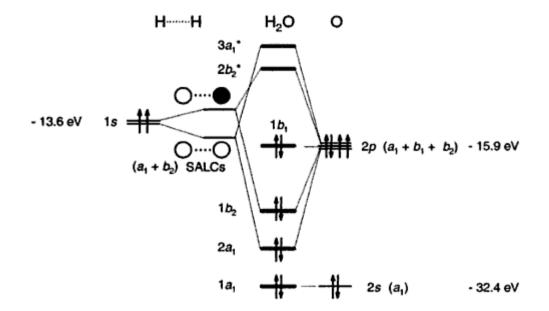
Consider H₂O

a. Point group = C_{2v}

b. 2 1s orbitals on equivalent H atoms generate 2 SALCs

 $\psi_1 = 1s (H_a) + 1s (H_b)$ $\psi_2 = 1s (H_a) - 1s (H_b)$

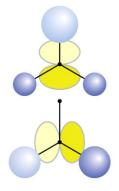
 c. What symmetries do these SALCs have? (perform symmetry ops for the group, assign "1" if unchanged, "-1" if inverted.)


Can look up O AO symmetries (s, p_z – A_1 ; p_x – B_1 ; p_y – B_2)

d. Combine SALCS of the same symmetry

Symmetry

MO diagram for H₂O

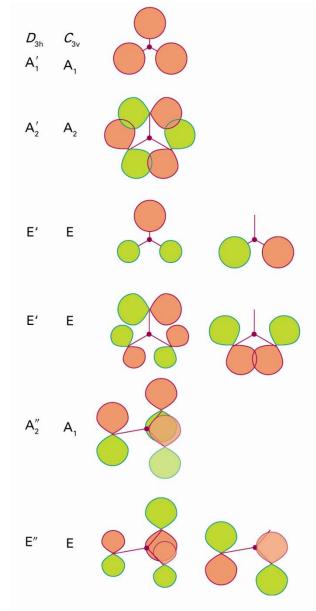


A little more complex

- Consider NH₃
 - a. Point group = C_{3v}
 - b. 3 1s orbitals on equivalent H atoms generate 3 SALCs

$$\begin{split} \phi_1 &= 1 \text{ s } (\text{H}_a) + 1 \text{ s } (\text{H}_b) + 1 \text{ s } (\text{H}_c) ---\text{A}_1 \\ \phi_2 &= 2 \text{ 1 s } (\text{H}_a) - 1 \text{ s } (\text{H}_b) - 1 \text{ s } (\text{H}_c) ----\text{E} \\ \phi_3 &= -1 \text{ s } (\text{H}_b) - 1 \text{ s } (\text{H}_c) ----\text{E} \end{split}$$

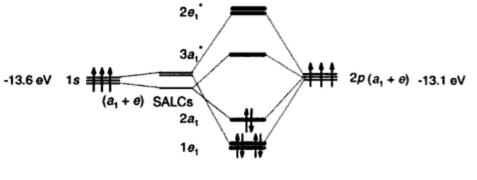
 c. What symmetries do these SALCs have? (perform symmetry ops for the group, assign "1" if unchanged, "-1" if inverted.

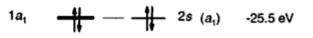


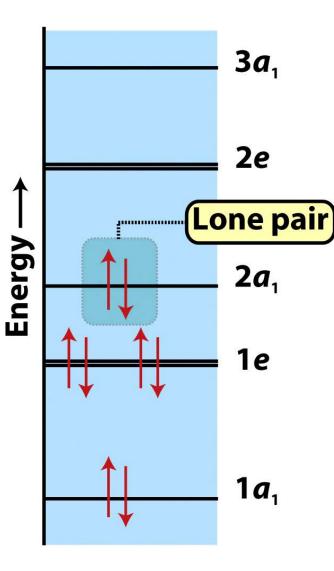
Can look up O AO symmetries (s, p_z-A_1 ; p_x-E ; p_y-E)

d. Combine SALCS of the same symmetry

A little more complex






Symmetry

MO diagram for NH₃

Table 7.5 The C_{3v} character table						
C _{3v}	Ε	2 <i>C</i> ₃	$3\sigma_v$	<i>h</i> = 6		
-		1	1 -1 0	$Z R_z$ $(x,y) (R_x, R_y)$	z ² (zx, yz) (x ² - y ² , xy)	
		H ₃	$\rm NH_3$	N		

MO diagrams for polyatomics

- ba. Assign the molecule to a point group
- b. use the character table of that point group to generate SALCs for equivalent atoms, or look them up (see resource section 4 in Shriver)
- c. arrange the SALCs for each fragment in order of increasing energy, given issues of whether they derive from s, p or d etc. orbitals, and then the number of nodes in the wavefunction.
- d. Combine SALCs of the same symmetry type from the two fragments (equivalent atoms and central atom). (Remember N AOs generate N SALCs, which generate N MOs.)
- e. Confirm, correct, and revise the qualitative energy order by experiment (*e.g.*, PES) or by carrying out a calculation.

Homework

Chapter 7
 Exercises: 7.2, 7.3, 7.6
 Problem: 7.1

We will stop our discussion of symmetry at spectroscopic applications (section 7.8).

Additional courses that advance this material include Chem 546 (Advanced Inorganic) and Chem 648 (Coordination Chemistry)

