Chem 241

Lecture 9

UMas 🖞 🍐 🍐 🍐 🌢 🗁 🗗 ... 🛓 🖣 🕨 Initiative

Recap

- Should be able to assign a Point Group
- Use point groups to determine chiral molecules and polarity.

Character Table

Table 7.3 The components of a character tab	Table 7.3	The compon	ents of a	character	table
---	-----------	------------	-----------	-----------	-------

Name of point group*	Symmetry operations <i>R</i> arranged by class (<i>E</i> , <i>C_n</i> , etc.)	Functions	Further functions	Order of group, <i>h</i>
Symmetry species (Γ)	Characters (χ)	Translations and components of dipole moments (<i>x, y, z</i>), of relevance to IR activity	Quadratic functions such as <i>z</i> ² , <i>xy</i> , etc., of relevance to Raman activity	
		Rotations (about axes <i>x, y, z</i>)		

* Schoenflies symbol.

Table 7.4 The C_{2v} character table						
<i>C</i> _{2v}	Ε	<i>C</i> ₂	σ (zx)	σ′ (yz)	h = 4	
A ₁	1	1	1	1	Ζ	x^2 , y^2 , z^2
A ₂	1	1	-1	-1	R_z	ху
B ₁	1	-1	1	-1	x, <i>R</i> _y	XZ
B ₂	1	-1	-1	1	y, R _x	ух

MO polyatomic

Consider H₂O

a. Point group = C_{2v}

b. 2 1s orbitals on equivalent H atoms generate 2 SALCs

 $\psi_1 = 1s (H_a) + 1s (H_b)$ $\psi_2 = 1s (H_a) - 1s (H_b)$

c. What symmetries do these SALCs have? (perform symmetry ops for the group, assign "1" if unchanged, "-1" if inverted.)

Can look up O AO symmetries (s, p_z – A_1 ; p_x – B_1 ; p_y – B_2)

d. Combine SALCS of the same symmetry

Symmetry

MO diagram for H₂O

A little more complex

- Consider NH₃
 - a. Point group = C_{3v}
 - b. 3 1s orbitals on equivalent H atoms generate 3 SALCs

$$\begin{split} \varphi_1 &= 1 \text{ s } (\text{H}_a) + 1 \text{ s } (\text{H}_b) + 1 \text{ s } (\text{H}_c) - --\text{A}_1 \\ \varphi_2 &= 2 \text{ 1 s } (\text{H}_a) - 1 \text{ s } (\text{H}_b) - 1 \text{ s } (\text{H}_c) - --\text{E} \\ \varphi_3 &= 1 \text{ s } (\text{H}_b) - 1 \text{ s } (\text{H}_c) - --\text{E} \end{split}$$

 c. What symmetries do these SALCs have? (perform symmetry ops for the group, assign "1" if unchanged, "-1" if inverted.

Can look up O AO symmetries (s, p_z-A_1 ; p_x-E ; p_y-E)

d. Combine SALCS of the same symmetry

A little more complex

Symmetry

MO diagram for NH₃

Table 7.5 The C_{3v} character table					
C _{3v}	Ε	2 C ₃	$3\sigma_{v}$	<i>h</i> = 6	
A ₁ A ₂		1 1	1 -1	z R _z	z ²
E				$(x,y) (R_x, R_y)$	(zx, yz) $(x^2 - y^2, xy)$
		H ₃	NH ₃	N	

MO diagrams for polyatomics

- a. Assign the molecule to a point group
- b. use the character table of that point group to generate SALCs for equivalent atoms, or look them up (see resource section 4/5 in Shriver)
- c. arrange the SALCs for each fragment in order of increasing energy, given issues of whether they derive from s, p or d etc. orbitals, and then the number of nodes in the wavefunction.
- d. Combine SALCs of the same symmetry type from the two fragments (equivalent atoms and central atom). (Remember N AOs generate N SALCs, which generate N MOs.)
- e. Confirm, correct, and revise the qualitative energy order by experiment (*e.g.*, PES) or by carrying out a calculation.

Homework

Chapter 7, 8
 Exercises: 7.2, 7.3, 7.6
 Problem: 7.1

We will stop our discussion of symmetry at spectroscopic applications (section 7.8).

Additional courses that advance this material include Chem 546 (Advanced Inorganic) and Chem 648 (Coordination Chemistry)

Coordination Compounds

 Metal complexes, in which a single metal ion is surrounded by several ligands, is chemistry that is typical of d-block and f-block elements,

 The modern view of coordination compounds stems from the work of Alfred Werner, who was intrigued by the colors of metal complexes and won a Nobel Prize in 1913. (He proposed that all ligand molecules are bound directly to the metal ion, contrary to existing bonding theory.)

The Dilema

Complex	Color	Early Name	Excess Ag ⁺
$CoCl_3 (NH_3)_6$	Yellow	<i>Luteo</i> complex	3 AgCl
$CoCl_3 (NH_3)_5$	Purple	<i>Purpureo</i> complex	2 AgCl
$CoCl_3 (NH_3)_4$	Green	Praseo complex	1 AgCl
$CoCl_3 (NH_3)_4$	Violet	<i>Violeo</i> complex	1 AgCl

•Compounds $M(NH_3)_6X_3$ are derived from compounds by loss of one ammonia molecule

Some Definitions

 Coordination compounds (complexes) result from the combination of Lewis acids and bases. The central metal is a Lewis acid (acceptor atom) the ligands are Lewis bases (donor atom).

An example: $[Co(NH_3)_6]CI_3$

- Hexamine cobalt(III) chloride is a salt that contains the complex cation, $[Co(NH_3)_6]^{3+}$ and chloride **counterions**.
- 2. In the cation, Co(III) is the Lewis acid and NH_3 is the Lewis base, or **ligand**. The number of ligands is the **coordination number**.
- 3. The ligand **donor atoms** (in this case N atom) are bonded to the metal.

Coordination Compounds

4. The sum of all the ligands constitutes the **primary coordination sphere** of the metal. The [] in formulas are used to define the primary coordination sphere.

What is $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$? $[\text{Ni}(\text{H}_2\text{O})_6]\text{Cl}_2$ What is $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$? $[\text{Co}(\text{Cl})_2(\text{H}_2\text{O})_4] \cdot 2\text{H}_2\text{O}$ In the first case, the choride anions outer sphere, in the second case they are inner sphere.

5. The additional solvent molecules in the outer sphere of $[Co(CI)_2(H_2O)_4] \cdot 2H_2O$ are **solvent of crystallization**.

Low Coordination

- 1. Low coordination numbers (CN = 2, 3). Most common for electron rich metals, d¹⁰ ions like Cu(I), Ag(I), Au(I), Hg(II) with small ligands
- Three coordination is rare and typically occurs with bulky ligands. Many low coordinate complexes readily add additional ligands.

4 - Coordinate Compounds

- Two common 4-coordinate geometries: tetrahedral and square-planar.
- Tetrahedral complexes are favored by sterics. are common when the metal ion is small (right side and third row) and when the ligands are large.
- Square planar complexes result from electronics (common in d⁸ metals) or from constraints.
- geometrical isomers
- Consider complexes of ML₃X and M₂L₂

5 - Coordinate Compounds

- Square planar geometry can also be forced by ligands that have an inflexible ring of four donor atoms, (e.g, macrocycles such as porphyrins).
 - c. Five-coordinate (CN=5) complexes have two limiting geometries, trigonal bipyramidal and square pyramidal, that often differ little in energy and are thus fluxional.

Coordination Compounds

• Fluxional behavior can equilibrate all five ligands via a Berry pseudo-rotation mechanism.

5 - Coordinate Compounds

 d. Six-coordinate complexes are the most comm Most have octahedral thereof. (e.g., tetragonal, trigonal, rhombic).

13 Octahedral complex, O_h

7 & 8 Coordinate

- Higher coordination numbers (more common for 4^{th} and 5^{th} row M(s)). CN = 7

16 Pentagonal bipyramid, D_{5h}

17Capped octahedron


```
18 Capped trigonal prism
Strutter 818
Strutt Addissingues Charling Forth Editors
```

+

CN = 8 (also sterochemically non-rigid)

Coordination Compounds

CN = 9

More common in f block (e.g., $[Nd(OH_2)_9]^{3+}$) Important d-block compound- $[ReH_9]^{2-}$ (note small L)

