It's what makes the cell!

It's what makes the cell!

- Transcriptional control
- Translational control
- Protein quantity (concentration)
- Protein lifetime
- Spacial targeting/co-localization
- Binding of effector molecules (noncovalent modification)
- Covalent modification
- pH and redox environment

- Transcriptional control
- Translational control
- Protein quantity (concentration)
- Protein lifetime
- Spacial targeting/co-localization
- Binding of effector molecules (noncovalent modification)
- Covalent modification
- pH and redox environment



- Transcriptional control
- Translational control
- Protein quantity (concentration)
- Protein lifetime
- Spacial targeting/co-localization
- Binding of effector molecules (noncovalent modification)
- Covalent modification
- pH and redox environment



- Transcriptional control
- Translational control
- Protein quantity (concentration)
- Protein lifetime
- Spacial targeting/co-localization
- Binding of effector molecules (noncovalent modification)
- Covalent modification
- pH and redox environment



- Transcriptional control
- Translational control
- Protein quantity (concentration)
- Protein lifetime
  - Intrinsic stability
  - Tagged for destruction
    - (poly-)Ubiquitination
    - Targeted to proteasome
      - Cleaved to short polypeptides



- Ubiquitination
  - multi-enzyme pathway
    - ubiquitin ligase adds to a near N-term Lys
  - How targeted?
    - phosphorylation
    - hydroxylation
    - N-term aa identity
      - -Protective
        - » Met, Ser, Thr, Ala, Val, Cys, Gly, Pro
- Why?
  - Quality, temporal control



- Transcriptional control
- Translational control
- Protein quantity (concentration)
- Protein lifetime
- Spacial targeting/co-localization
- Binding of effector molecules (noncovalent modification)
- Covalent modification
- pH and redox environment

- Transcriptional control
- Translational control
- Protein quantity (concentration)
- Protein lifetime
- Spacial targeting/co-localization
- Binding of effector molecules (noncovalent modification)
- Covalent modification
- pH and redox environment



- Spacial targeting/co-localization
  - More common in eukaryotes, as there are more compartments
    - in an organelle
    - attached to a membrane
    - attached to cytoskeleton
    - associated with above...
  - May allow eukaryotes to "do more with less"
  - Achieved/signaled by
    - localization sequences
    - post-translational modification
    - Binding to scaffold / membrane



- Localization signals (sequences)
  - Endoplasmic reticulum (KDEL)
    - targets to ER
    - and ultimately to plasma membrane
  - Nuclear localization (KRKR)
    - targets to nucleus
  - Others
    - extracellular secretion
    - mitochondrial import
  - Can be N-terminal, C-terminal, or even internal sequences in the protein
- post-translational modification
- Binding to scaffold / membrane



- localization signals (sequences)
- Post-translational modification
  - differ from intrinsic localization signals in that they **regulatable**.
  - Phosphorylation of Ser, Tyr, Thr
    - by protein kinases
    - oft-used in signaling
- Binding to scaffold / membrane



- localization signals (sequences)
- post-translational modification
- Binding to scaffold / membrane
  - Lipid anchoring
    - covalently attach N-/C-terminus to a lipid
    - localizes soluble protein near membrane
    - membrane structure can further localize such a protein
  - Scaffold typically has a recognition domain
    - SH3 domain binds Pro-rich seqs
    - SH2 domain binds phosphorylated Tyr
    - membrane lipids bind PH domain



Probably the most wellrecognized form of enzyme modulation (inhibitor and activators)



end-product bound to active site of enzyme 1 shuts down pathway

- Transcriptional control
- Translational control
- Protein quantity (concentration)
- Protein lifetime
- Spacial targeting/co-localization
- Binding of effector molecules (noncovalent modification)
- Covalent modification
- pH & redox env

Probably the most wellrecognized form of enzyme modulation (inhibitor and activators)

down pathway



- Binding of effector molecules (noncovalent modification)
  - Competitive binding
    - binds at active site, displacing substrate or other effector molecule
  - Noncompetitive binding
    - allostery action at a distance (eg. effects k<sub>cat</sub>)
  - Common:
    - Feedback inhibition



enzyme 1 shuts down pathwav

- Binding of effector molecules (noncovalent modification)
  - Cooperativity between binding sites for the same ligand, in which binding at one site affects affinity at the other
- Positive cooperativity
  - Binding at one site makes binding at the second site stronger
- Negative cooperativity
  - Binding at one site makes binding at the second site *weaker*
- Reflects flexibility in structure binding at one site distorts the other
- "Cooperativity is only present in oligomeric proteins, where there are ≥ 2 subunits, each with a binding site for the ligand"



- Binding of effector molecules (noncovalent modification)
  - Allostery action at a distance

- Allosteric activator
  - Binding at one site makes binding at the second site stronger
- Allosteric inhibitor
  - Binding at one site makes binding at the second site *weaker*
- Reflects flexibility in structure binding at one site distorts the other
- "Cooperativity is only present in oligomeric proteins, where there are ≥ 2 subunits, each with a binding site for the ligand"



- Binding of effector molecules (noncovalent modification)
  - Allostery action at a distance

- Allosteric activator
  - Binding at one site makes binding at the second site *stronger*
- Allosteric inhibitor
  - Binding at one site makes binding at the second site *weaker*
- Reflects flexibility in structure binding at one site distorts the other
- "Cooperativity is only present in oligomeric proteins, where there are ≥ 2 subunits, each with a binding site for the ligand"

#### **Advertisement: Chem 728**



#### Allostery

- Effector ligand can be a small molecule or another protein

- Hemoglobin / O<sub>2</sub>
  - O<sub>2</sub> binding to one subunit activates remaining subunits



#### Allostery

- Effector ligand can be a small molecule or another protein

- Hemoglobin / O<sub>2</sub>
  - O<sub>2</sub> binding to one subunit activates remaining subunits
- Aspartate transcarbomylase
  - ATP binding triggers change that opens active site for substrate binding



- Allostery
  - Effector ligand can be a small molecule or another protein
- Hemoglobin / O<sub>2</sub>
  - O<sub>2</sub> binding to one subunit activates remaining subunits
- Aspartate transcarbomylase
  - ATP binding triggers change that opens active site for substrate binding
- DtxR repressor
  - Binding of Fe<sup>2+</sup> alters spacing of major groove reading heads to allow proper fit in two consecutive major grooves



- Transcriptional co
- Translational con
- Protein quantity (
- Protein lifetime
- Spacial targeting,
- Binding of effectc
  (noncovalent mouncauon)
- Covalent modification
- pH and redox environment

Phosphorylation of Ser14 induces movement of a loop that prior to phosphorylation is blocking the active site

Glycogen phosphorylase







Glycogen phosphorylase

- **Phosphorylation of Ser/Tyr hydroxyl** (and His/Asp)
  - Added by protein kinases
  - Removed by protein phosphatases
  - Controlled reversibility
- Adds a double negative charge to a polar, but uncharged amino acid
  - Adds electrostatic repulsion / attraction
  - Adds new H-bonding potential
  - Adds potential recognition site for binding of a second protein
    - eg. SH2 domains bind P-Tyr

From Protein Structure and Function by Gregory A Petsko and Dagmar Ringe



Isocitrate dehydrogenase phosphorylation of Ser 113 adds charge to substrate binding site

- Transcriptional control
- Translational control
- Protein quantity (concentration)
- Protein lifetime
- Spacial targeting/co-localization
- Binding of effector molecules (noncovalent modification)
- Covalent modification
- pH and redox environment

- Protein switches based on nucleotide hydrolysis
- G-proteins
  - GTP bound presents a Y-phosphate
  - GDP bound removes the Y-phosphate
  - GTP hydrolysis switches
    from first state to second
  - Different proteins bind to the two states
- Motor proteins
  - Same idea, but with ATP

From Protein Structure and Function by Gregory A Petsko and Dagmar Ringe



- G-proteins (GTPases)
  - Conserved sequence motifs
    - P-loop: binds α,β-phosphate
      - GX<sub>4</sub>GKS/T
    - Switch I
      - DXnT
    - Switch II
      - GX<sub>2</sub>G
    - Guanine base-binding region
      - N/TKXD
- Motor proteins (ATPases)
  - P-loop: GX4GKS/T
  - Switch I: NX<sub>2</sub>SSR
  - Switch II: DX<sub>2</sub>G
  - Adenine base-binding region
    - RXRP



- Transcriptional
- Translational cc
- Protein quantity
- Protein lifetime
- Spacial targetin
- Binding of effec modification)
- Covalent modifi



- pH and redox environment
  - protonation/deprotonation changes local charge
  - redox state change changes charge / coordination
  - redox change favors/disfavors disulfide bond

- pH and redox environment
  - protonation/deprotonation changes local charge
    - cathepsin is activated in the endosome

N-terminus binds in substrate binding site

substrate binding site open catalytic residues protonated



- pH and redox environment
  - protonation/deprotonation changes local charge
  - redox state change changes charge / coordination
  - redox change favors/disfavors disulfide bond

From Protein Structure and Function by Gregory A Petsko and Dagmar Ringe



© 1999–2004 New Science Press

- Transcriptional control
- Translational control
- Protein quantity (concentration)
- Protein lifetime
- Spacial targeting/co-localization
- Binding of effector molecules (noncovalent modification)
- Covalent modification proteolysis
  - trypsinogen -> trypsin
  - plasminogen -> plasmin
  - prothrombin -> thrombin
- pH and redox environment





- Transcriptional control
- Translational control
- Protein quantity (concentr
- Protein lifetime
- Spacial targeting/co-local
- Binding of effector molect modification)



- nomenclature similar to that of nucleic acids
  - exon/intron extein/intein
- one step, so does not require ATP
- pH and redox environment



- Transcriptional control
- Translational control
- Protein quantity (concentration)
- Protein lifetime
- Spacial targeting/co-localization
- Binding of effector molecules (noncovalent modification)
- Covalent modification splicing
  - nomenclature similar to that of nucleic acids
    - exon/intron extein/intein
  - one step, so does not require ATP
- pH and redox environment

