Solving structures by NMR

Qinghua Wang 1232B LGRT 545-3473; qwang@biochem.umass.edu

- 1946 Bloch, Purcell first nuclear magnetic resonance
- 1955 Solomon NOE (nuclear Overhauser effect)
- 1966 Ernst, Anderson Fourier transform NMR
- 1975 Jeener, Ernst 2D NMR
- 1985 Wüthrich first solution structure of a small protein (BPTI)from NOE derived distance restraints
- 1987 3D NMR + 13C, 15N isotope labeling of recombinant proteins
- 1990 pulsed field gradients (artifact suppression)
- 1996/7 new long range structural parameters: projection angle restraints from residual dipolar couplings (RDCs) or cross-correlated relaxation
 - TROSY (molecular weight > 100 kDa)

- Nobel prizes
- 1944 Physics Rabi (Columbia)
- 1952 Physics Bloch (Stanford), Purcell (Harvard)
- 1991 Chemistry Ernst (ETH)
- 2002 Chemistry Wüthrich (ETH)
- 2003 Medicine Lauterbur (Urbana), Mansfield (Nottingham)

Lecture overview

- 1. A few reminders from last lecture
- 2. The problem of sequential assignment, and how it is solved
- 3. Calculating an NMR structure from inter-nuclear distances
- 4. How to assess the quality of an NMR structure

The energy state of one nucleus can affect other nuclei:

Scalar couplings between nuclei connected by three or fewer bonds

Dipolar couplings between nuclei that are close together in space (<~5Å)

For example: a two-dimensional NOESY correlation spectrum

•Off-diagonal peaks correspond to NOEs between two protons that are close to each other in the 3-dimensional structure of the protein

•The intensity of the peak is proportional to r^{-6} (r = distance between protons) •Limited to protons within about 5 Å of each other

 $\label{eq:result} Figure \ 18 \ \text{Two-dimensional (2D)} \ |^1\text{H},^1\text{H}|\text{-NOE spectroscopy} \ ([^1\text{H},^1\text{H}|\text{-NOESY}). A stacked plot representation of a spectrum of the small protein bull seminal proteinase inhibitor IIA (BUSI IIA, M \approx 6000) is shown (500 MHz, 45 °C, H_2O-solution).$

Figure 19 2D [¹H,¹H]-NOESY spectrum of the plant pathogenesis-related protein P14A (M \approx 15000). A contour plot of the spectral region [ω_1 (¹H) = 0–4.3 ppm, ω_2 (¹H) = 6.3–9.5 ppm] is shown (750 MHz, 30 °C, H₂O-solution).

Wüthrich, *J. Biomol. NMR*, **27**: 13-39, 2003

NMR structure calculation relies primarily on NOEs

Figure 24 Scheme indicating the relations between an experimental 2D [1 H, 1 H]-NOESY spectrum, a polypeptide with the chain ends indicated by N and C, sequence-specific assignments for two hydrogen atoms in the polypeptide chain indicated by circles, and the NOE upper distance constraint derived from the NOESY cross-peak connecting the chemical shift positions of the two assigned hydrogen atoms (see text).

Wüthrich, J. Biomol. NMR, 27: 13-39, 2003

The Sequential Assignment Problem!

If the chemical shift of each proton is known, every off-diagonal peak can be assigned to a short-distance interaction between two specific protons within the protein sequence.

Peak volume or intensity relates to the interproton distance.

Hundreds or thousands of inter-proton distance restraints are used to calculate three-dimensional structures that are consistent with the NOE data.

The Problem of Sequential Assignment

Solution: Use "through-bond" scalar couplings (as opposed to the "throughspace" correlations that underlie the NOE) to trace from one nucleus to another.

Different strategies are utilized for small proteins versus larger proteins, where peak overlap (or chemical shift degeneracy) becomes more of a problem.

Figure 16 Sequential ¹H NMR assignment of proteins. The drawing shows the chemical structure of a – valine – alanine – dipeptide segment in a polypeptide chain. The dotted lines connect groups of hydrogen atoms that are separated by at most three chemical bonds and can therefore be connected using scalar spin-spin couplings. The broken arrows link pairs of hydrogen atoms in neighbouring amino acid residues that are separated by short through-space distances. d_{RN} and d_{NN} , and can therefore be connected by 'sequential NOEs'.

Wüthrich, J. Biomol. NMR, 27: 13-39, 2003

Sequential Assignment for proteins <15 kDa

•Two-dimensional ¹H,¹H-COSY spectrum shows correlations between protons connected through three or fewer bonds (indicated by, below left).

Each residue is a closed system in this experiment, called a "spin system", isolated by the carbonyl.

Can usually identify a spin system as a particular amino acid type based on the number of resonances and their chemical shifts.

•Spin systems are connected sequentially using short-range NOE correlations from a 2D NOESY spectrum, usually $d_{\alpha N}$ and d_{NN} (indicated by -----, below left).

Figure 16 Sequential ¹H NMR assignment of proteins. The drawing shows the chemical structure of a – valine – alanine – dipeptide segment in a polypeptide chain. The dotted lines connect groups of hydrogen atoms that are separated by at most three chemical bonds and can therefore be connected using scalar spin-spin couplings. The broken arrows link pairs of hydrogen atoms in neighbouring amino acid residues that are separated by short through-space distances. d_{aN} and d_{NN} , and can therefore be connected by 'sequential NOEs'.

Wüthrich, J. Biomol. NMR, 27: 13-39, 2003

From "NMR of Proteins & Nucleic Acids, by K. Wüthrich, pp. 54-55

Sequential assignment for larger proteins (>15 kDa)

Two problems with larger proteins:

- 1. Many more protons lie in same spectral range, and peaks overlap.
- 2. Molecule tumbles more slowly as a whole, leading to broad peaks.

 Problem #1 can be overcome by labeling protein with other NMRsensitive nuclei, such as ¹³C and ¹⁵N.

•Overcrowded spectra can then be spread out in additional dimensions.

Accomplished by growing cells in a minimal growth medium with single carbon/nitrogen sources (e.g. ¹³Cglucose and ¹⁵NH₄Cl for *E. coli*).

 Disadvantage is the substantial cost of isotopic labeling.

Figure 3. Schematic 2-D and 3-D NMR spectrum. The drawing illustrates the representation of a 3-D spectrum and the increased resolution obtained when going from 2-D to 3-D NMR spectra. The six peaks in the 2-D [¹H,¹ N]-correlation spectrum (A) are separated in different planes of a 3-D spectrum (B) by an additional correlation with the α -carbon nuclei (¹³C) attached to the nitrogen nuclei (¹⁵N) in the same amino acid residue. The chemical shifts of the carbon nuclei are used to spread the resonances from the 2-D plane into a third dimension.

Wider, Biotechniques, 29: 1278-1294, 2000

Sequential assignment for larger proteins (>10-15 kDa)

Carbon and nitrogen labeling enable tracing directly along backbone from one amino acid to the next via scalar "through-bond" couplings.

Example: An HNCA experiment yields a strong intra-residue correlation between the amide proton, nitrogen and alpha carbon, plus a weak correlation from the amide proton and nitrogen to the alpha carbon of the i-1 (preceding) residue.

From "NMR Data Processing" by Hoch and Stern

Slices from a 3D HNCA experiment

More tricks for even larger proteins (>25 kDa)

Segmental isotopic labeling can solve problems with peak overlap:

- •Two portions of protein are expressed separately, with only one isotopically labeled.
- •Two segments are then ligated in vitro to re-create the full-length protein.

Partial labeling with deuterium slows relaxation of NMR signals, and can narrow peaks that are broad due to slow molecular tumbling.

•New <u>TROSY and CRINEPT</u> experiments give sharper peaks for very large proteins, especially with high-field spectrometers (900 MHz).

Some of the biggest proteins studied so far:

•40 kDa hHR23a protein structure (Walters et al., PNAS 100:12694-12699, 2003)

- •42 kDa maltodextrin-binding protein global fold determined (Müller et al., JMB 300:197-212, 2000)
- **110 kDa aldolase octamer assigned** (Salzmann et al., JACS 122:7543-7548, 2000)
- ■81 kDa Malate Synthase G assigned (Tugarinov et al., JACS 124:10025-10035, 2002)
- **900 kDa GroEL/ES tetradecamer partially assigned** (Fiaux et al., Nature 418:207-211, 2002)

Spin-spin relaxation becomes very efficient when tumbling is slow, leading to short T_2

www.embl-heidelberg.de/nmr/sattler/ teaching/teaching_pdf/bionmr_theo+appl.pdf

How to overcome broad peaks:

Replacing most (or all non-labile) protons with deuterons reduces the primary contribution to relaxation: dipolar interactions with protons nearby

Transverse relaxation-optimized spectroscopy (TROSY)

Takes advantage of relaxation interference between chemical shift anisotropy and dipolar interactions to select for the narrowest component of a multiplet

Example: a 110 kDa protein complex at 750 MHz

Pervushin, K., Q. Rev. Biophys., 33:161-197, 2000

Structure Calculation

Once assignments are complete (chemical shifts of most protons are known), NOESY peaks are interpreted as distance restraints between pairs of protons, starting with peaks that can be unambiguously assigned.

Assemble a list of distances between pairs of protons, called structural restraints.

Figure 24 Scheme indicating the relations between an experimental 2D [1 H, 1 H]-NOESY spectrum, a polypeptide with the chain ends indicated by N and C, sequence-specific assignments for two hydrogen atoms in the polypeptide chain indicated by circles, and the NOE upper distance constraint derived from the NOESY cross-peak connecting the chemical shift positions of the two assigned hydrogen atoms (see text).

Sample slices from a 3D 15N-edited NOESY experiment

•Initially, not all peaks can be unambigously assigned

•Peak volumes are related to the inverse sixth power of the distance between the two protons

•Volumes are hard to accurately measure in crowded regions of spectrum

NOEs between residues that are distant in protein sequence are extremely important restraints for structure calculation

Sequential HN-HN NOEs indicate turn or helix

Sources of error in NOE restraints

Incorrect volume of peak due to overlapMixing time in pulse sequence too long - spin diffusion occurs

(Thus NOE restraints are given wide distance ranges, or are merely classified as strong, medium and weak)

Incorrect assignment (will hopefully become clear later)

Spin diffusion

The longer the mixing time, the more likely that magnetization mixes from A to B and then from B to C, ultimately resulting in a A-C peak that is larger than it ought to be and an A-B peak that is smaller than it ought to be.

Fundamentals of Protein NMR Spectroscopy, by Rule and Hitchens, Springer 2006

Residual dipolar couplings (RDCs): a new structural restraint that rivals the NOE

A nearby dipole affects the local net magnetic field, and depends on whether the dipole is oriented with or against the external magnetic field.

The degree of coupling depends on the orientation of the internuclear vector - maximum when parallel to B_0

$$D^{PQ} = D^{PQ}_{max} \langle (3\cos^2\theta - 1)/2 \rangle,$$

In solution, protein tumbling averages the dipolar coupling to zero, since all molecular orientations with respect to the external magnetic field are possible.

The dipolar couplings can be reintroduced by <u>partial</u> alignment of protein molecules in solution. In a slightly anisotropic environment, the orientational distribution of the proteins is no longer random. In such an environment, the large one-bond inter-nuclear dipolar interactions no longer average to zero and report on the average orientation of the corresponding vectors relative to the magnetic field. Partial alignment is accomplished by adding bicelles, filamentous phage, or aqueous nematic liquid crystalline suspensions into protein solution, or by incorporating protein into anisotropically compressed hydrogels

Weak interaction of protein with alignment media causes some molecular orientations to be disfavored, others favored.

Fundamentals of Protein NMR Spectroscopy by Rule and Hitchens, Springer 2006 no alignment Bicelles Phage (mechanical) (electrostatic) Bax, A., Protein Sci 12:1-16, 2003 Simple data collection: HSQC without proton decoupling during ¹⁵N chemical shift evolution, collected with and without alignment media

When aligned, splitting of peaks corresponds to the scalar coupling constant plus the dipolar coupling: $J_{NH} + D_{NH}$

Figure 4. Small regions of the 600 MHz ¹⁵N-¹H correlation spectra of ubiquitin, recorded in the absence of ¹H decoupling in the ¹⁵N dimension, at three different levels of molecular alignment. (A) Isotropic spectrum, with the marked splitting corresponding to ¹J_{NH}. (B) Spectrum recorded in 4.5% (w/v) bicelles, consisting of a 30:10:1 molar ratio of DMPC, DHPC, and cetyl-trimethyl ammonium bromide (CTAB). (C) Spectrum recorded in 8% (w/v) bicelles. Marked splittings in panels B and C correspond to the sum of the ¹J_{NH} and dipolar coupling. The broadening in the ¹H dimension, observed in panels B and C relative to A is caused by ¹H-¹H dipolar couplings.

Many internuclear vectors can be measured using partial alignment

Residual dipolar couplings are especially useful for orienting domains of known structure in a multidomain protein, or for orienting proteins that interact. Other restraints are sometimes incorporated into structure calculation:

Residual dipolar couplings (RDCs) measured in weakly-aligned samples give the angle of bond vectors with respect to the magnetic field (and therefore to each other).

increasingly used, some recent structures rely more on RDCs than NOEs.

•Dihedral angles calculated from scalar coupling constants (ϕ , ϕ , χ_1)

Hydrogen bond restraints

- 1. From hydrogen exchange measurements: Simplest method is to dissolve lyophilized protein into D2O-containing buffer, and monitor loss of amide protons as they exchange for deuterons by collecting successive experiments. Hydrogen-bonded amides will exchange very slowly.
- 2. Measured directly *via* very weak scalar coupling across hydrogen bond

•Chemical shift data: alpha proton and alpha, beta and carbonyl carbon chemical shifts have been empirically related to ϕ/ϕ dihedral angles

Structure Calculation

•Full list of unambiguous structural restraints are input into distance geometry or simulated annealing protocol

- a set of 30-100 structures are calculated that are consistent with restraints
- structures are refined by restrained molecular dynamics or energy minimization

 Initial structures are usually of poor quality due to inadequate numbers of NOEs (or incorrectly assigned NOEs).

-initial structures help to assign NOEs that were previously ambiguous, and to fix incorrect ones.

•Repeat this process iteratively. 15-25 "best" structures are selected for NMR model.

Figure 6. Protein backbone structures calculated with different numbers of NMR constraints. The structures show the SH₂ domain of human p56 Lck tyrosine kinase (26) at various stages of the assignment of additional distance constraints on the basis of preliminary structures (courtesy M. Salzmann). Backbone superpositions of ten conformers are shown with 1113 constraints (left), 1336 (middle) and 1687 constraints (right). (The RMSD between the positions of the polypeptide backbone atoms in the different conformers of the three bundles of structures are 4.2, 1.9 and 1.1 Å, respectively).

Wider, Biotechniques, 29: 1278-1294, 2000

Assessing Structural Quality

1998 IUPAC Task Force recommended the following structural statistics be reported:

- Number and type of NOEs used {intraresidue, sequential, medium range (≤5 residues apart), long range (>5 residues apart), intermolecular}
- 2. Number of torsion angle restraints
- 3. Number of hydrogen bond restraints
- 4. Maximum restraint violation and the average violation per constraint
- 5. Deviations from idealized geometry (*i.e.*, unusual bond lengths or bond angles)
- 6. Precision of structures: RMSD with respect to the mean structure (backbone versus all heavy atoms)
- 7. Percentage of residues falling into allowed regions of $\phi\phi$ space

RMSD: root mean square deviation (in Å)

- 1. Calculate a mean structure from the ensemble of *n* structures by averaging the position of each atom in all the structures. The average structure is then energy-minimized to fix all the problems with bond angle/length, etc.
- 2. Calculate rmsd relative to this mean structure:
 - For each atom, measure the distance, *r*, between its position in structure *i* and the mean structure.

$$rmsd = \left(\sum_{i=1}^{n} r_i^2 / n\right)^{\frac{1}{2}}$$

This gives an rmsd for each atom in the protein.

3. For "heavy atom rmsd", average the rmsds for all the non-hydrogen atoms.

For global rmsd, average all atomic rmsds.

Assessing Structural Quality

1998 IUPAC Task Force recommended the following structural statistics be reported:

 Number and type of NOEs used {intraresidue, sequential, medium range (≤5 residues apart), long range (>5 residues apart), intermolecular}

- 2. Number of torsion angle restraints
- 3. Number of hydrogen bond restraints
- 4. Maximum restraint violation and the average violation per constraint
- 5. Deviations from idealized geometry (*i.e.*, unusual bond lengths or bond angles)

6. Precision of structures: RMSD with respect to the mean structure (backbone versus all heavy atoms)

7. Percentage of residues falling into allowed regions of $\phi\phi$ space

Ramachandran Plot showing allowed regions of $\phi \phi$ space

Black: favored regions Dark Grey: additionally-allowed regions Light Grey: generously-allowed regions White: disallowed regions

Fig. 1. The Ramachandran plot shows the distribution of ϕ - ψ values for all the residues in the structure. Here, only models 1 to 5 have been selected from the entire ensemble of 25 models. Each data point is labelled with its model number, while the names of any residues in disallowed regions of the Ramachandran plot are printed above their respective points. The shading indicates the favourable and unfavourable regions of the plot, the darker the shading the more favourable the region. A separate plot can be generated for each model in the ensemble, and even for each residue (see Fig. 2).

Laskowski et al., J. Biomol. NMR, 8: 477-486, 1996

Assessing Structural Quality

1998 IUPAC Task Force recommended the following structural statistics be reported:

- 1. Number and type of NOEs used {intraresidue, sequential, medium range (≤5 residues apart), long range (>5 residues apart), intermolecular}
- 2. Number of torsion angle restraints
- 3. Number of hydrogen bond restraints
- 4. Maximum restraint violation and the average violation per constraint
- 5. Deviations from idealized geometry (*I.e.*, unusual bond lengths or bond angles)

6. Precision of structures: RMSD with respect to the mean structure (backbone versus all heavy atoms)

7. Percentage of residues falling into allowed regions of $\phi\phi$ space

1 and 6 are the best indicators of structural quality.

- Goal: 1. 15-20 restraints per residue
 - 2. 0.6Å rmsd for backbone atoms, 1.0Å rmsd for heavy atoms

Comparing NMR structures and crystal structures

<u>Very</u> rough rule of thumb (with many many exceptions): an NMR structure calculated with ≥20 restraints per residue is equivalent to a 2-2.5Å crystal structure

Figure 1. The structural uncertainty, $H_{\text{structure}}$, of the IgG-binding domain of protein G as a function of the number of distance restraints incorporated. The interproton distance restraints are grouped into four sets: intraresidual restraints (IR), sequential restraints (SQ), medium-range restraints (MR), and long-range restraints (LR). Two different orders of addition of the experimental data are shown: (A) IR-SQ-MR-LR and (B) LR-MR-SQ-IR.

But... long range restraints are much more important than medium range, sequential or intraresidue ones for making a high quality NMR structure

Comparing two NMR structures

19.5 restraints/residue

11.7 restraints/residue

Table 1 Summary of restra	aints and structu	ral statistics		Table 1 Structural statist	cs for LC1	
Restraints				Data set	<sa>1</sa>	(SA) _r ²
NOEs ¹		.200/	modium long rostraints	R.m.s. deviations with respect to mean for residue	s 3–197	
Intraresidue	1.474	50 /0	medium-iony restraints	Heavy backbone atoms (Å)	0.61 ± 0.11	
Sequential	429			All heavy atoms (Å)	1.10 ± 0.10	
Medium range (i < 5)	341			Number of experimental restraints		
Long range	460	45%	medium-long restraints	Interresidue seguential (li - jl = 1)	764	
Unambiguous	2,699			Interresidue medium range $(1 < i - j \le 5)$	491	
Ambiguous	5			Interresidue long range ($ i - i > 5$)	551	
Total NOEs	2,704			Meaningful intraresidue	513	
Others				Hydrogen bonds ³	103	
φ,ψ	150			Dihedral angles	165 φ. 85 ψ. 16 γ ₁	
Hydrogen bonds ²	48 (× 2)		a como provision	Restraint violations ⁴	···· · · · · · · · · · · · · · · · · ·	
Total number of restraints	2,948		~ same precision	NOE distances with violations >0.3 Å	0.4 ± 0.7	0
Deviations from experimental	<sa>3</sa>	Lowest Energy		Dihedrals with violations $>3^{\circ}$	0.4 ± 0.6	0
R.m.s. deviation of NOE	0.020 (0.001)	0.018		R.m.s. deviations for experimental restraints ⁵		
NOE violations > 0.3 Å	0.4 (0.6)	0		All distance restraints (2319) (Å)	0.022 ± 0.001	0.025
ϕ, ψ violations > 5°	0.3 (0.5)	0		Torsion angles (266) (°)	0.331 ± 0.059	0.278
Deviations from ideal geometry				X-PLOR energies from simulated annealing ⁶		
Bonds (Å)	0.0018 (0.0001)	0.0016		F_{acc} (kcal mol ⁻¹)	63.9 ± 7.9	48.2
Angles (°)	0.360 (0.006)	0 251		F _{tor} (kcal mol ⁻¹)	1.8 ± 0.6	1.2
Impropers (°)	0.277 (0.011)	0.270		E_{cond} (kcal mol ⁻¹)	159.1 ± 9.8	142.5
Precision				E ₁ (kcal mol ⁻¹) ⁷	-251.6 ± 30.0	-263.8
Backbone helices⁴	0.43 (0.07)			R.m.s. deviations from idealized covalent geometr	v	
Heavy atoms helices⁵	0.91 (0.10)			Bonds (Å)	0.004 ± 0.000	0.004
Heavy atoms 10–34, 48–136	1.09 (0.17)			Angles (°)	0.489 ± 0.012	0.457
Structure quality				Impropers (°)	0.390 ± 0.016	0.390
Procheck (%; mf / aa / ga / da)6	74/18/6/2	77 / 17 / 4 / 2		Ramachandran analysis (residues 1–198)		
What If ⁷	-1.80 (0.07)	-1.79		Residues in favored regions (%)	67.1 + 1.6	68.9
X-PLOR energy®	163.1 (6.5)	149		Residues in additional allowed regions (%)	30.0 + 1.8	29.0
NOEs were counted with explicit inclusion of all H atoms of methyl and				Residues in generously allowed regions (%)	2.7 + 1.0	2.1
methylene groups (that is, no pseudoatoms). Trivial distances were not included.				Residues in disallowed regions (%)	0.2 ± 0.3	0
-hydrogen bonds were included as and O ₁₃ atoms and a restraint of 2. residues whose amides where dete exchange within helices. The value the restraint. ³ Values are reported as the averag structures with standard deviation for superimposing each of the 15 stru This superposition was over hor 27–30, 48–66, 79–92, 100–114, 120- ⁶ Procheck analysis ³⁹ : mf, most favor erously allowed; da, disallowed. ⁷ Whatif score (QUACHK) ¹⁵	a restraint of 1.5 (0 5 (0.8) Å between N irmined to be in slc in parentheses is th e values over 15 of is in parentheses. the coordinate set ctures onto the me one N, C, O and Co 4, 120–133. hydrogen atoms of 133. ed; aa, additionally t 3.851 ³⁸ with for	(a) A between HN, 4, and Q ₁₃ for those by to intermediate be upper bound on the lowest energy was calculated by can coordinate set. a toms of residues of residues 13–20, y allowed; ga, gen- brice constants of		 1<sa> represents the 17 structures calculated in DYAN in X-PLOR using energy terms for NOE distance restratangles, impropers and hard sphere van der Waals con 2(SA), represents the structure calculated by restrain <sa> structures.</sa></sa> ³Two distance restraints per hydrogen bond were use ⁴No distance restraints were violated by >0.5 Å, and >5°. ⁵The number of restraints for each experimental class ⁶The force constants used for the potential energy te 200 kcal mol⁻¹ rad² for f_{tor}. The hard sphere van der V ed with a force constant of 4 kcal mol⁻¹ Å² with the value in the CHARMM-19 parameter set. ⁷The Lennard-Jones 6-12 energy was calculated witl Inc.) using the CHARMM-22 parameters. 	A and refined by simulat ints, dihedral angle rest tacts. ed minimization of the d, providing a total of 2 no dihedral angles wer is shown in parentheses ms were 50 kcal mol ⁺¹ Å /aal repulsion term F _{repel} an der Waals radii set to hin QUANTA (Molecular	ted annealing raints, bonds, mean of the 206 restraints. re violated by . ² for F _{noe} and was calculat- 0.8 times the r Simulations,

Take-home points:

1. NMR structures are built up from many short discrete distance restraints, primarily utilizing NOE data.

2. NOEs result from dipole-dipole interactions between protons close in space, and the closer the protons, the more intense the NOE peak.

3. Medium-to-long range restraints (those between non-adjacent residues) are crucial for calculating a high-quality structure.

3. Deposited structures are typically the result of 20-30 structure calculations, and the better they overlay (low RMSD), the higher the structural quality.