Physical Chemistry Principles and Applications in Biological Sciences, 4th Edition Tinoco, Sauer, Wang, & Puglisi

Chapter	Topic	Page	Lec
1	Introduction		
	The Human Genome and Beyond	4	
	Transcription and Translation	6	
	Ion Channels	10	
	References, Suggested Reading, Problems	11	
2	The First Law: Energy is Conserved	15	
	Energy Conversion and Conservation	16	
	Describing the State of a System	29	
	Phase changes	45	
	Chemical Reactions	47	
	Molecular Interpretations of Energy and Enthalpy	56	
	Summary	57	
	Mathematics Needed for 2	60	
	References, Suggested Reading, Problems	61	
3	The Second Law: The Entropy of the Universe Increases	69	
	Historical Development of the Second Law: The Carnot Cycle	69	
	A New State Function, Entropy	73	
	The 2 nd Law of Thermodynamics: Entropy Is Not Conserved	75	
	Molecular Interpretation of Entropy	77	
	Measurement of Entropy	81	
	Chemical Reactions	81	
	Third Law of Thermodynamics	82	
	Gibbs Free Energy	87	
	Helmholtz Free Energy	97	
	Noncovalent Reactions	97	
	Use of Partial Derivatives in Thermodynamics	106	
	Summary	111	
	References, Suggested Reading, Problems	111	
4	Free Energy and Chemical Equilibria	121	
	Chemical Potential (Partial Molar Gibbs Free Energy)	122	
	Reactions of Gases: The Ideal Gas Approximation	125	
	Nonideal Systems	130	
	The Equilibrium Constant and the Standard Gibbs Free	141	
	Energies of the Reactants and Products		
	Galvanic Cells	153	
	Biochemical Applications of Thermodynamics	159	
	Biological Redox Reactions	170	
	Summary	176	
	Mathematics Needed for 4	179	

	References, Suggested Reading, Problems	179
5	Free Energy and Physical Equilibria	187
	Phase Equilibria	188
	Membranes	213
	Active and Passive Transport	227
	Colligative Properties	231
	Molecular-Weight Determination	239
	Summary	241
	References, Suggested Reading, Internet, Problems	244
6	Molecular Motion and Transport Properties	253
	Kinetic Theory	255
	Molecular Collisions	265
	Diffusion	267
	Sedimentation	279
	Determination of Molecular Weights from Sedimentation and	285
	Diffusion	
	Viscosity	289
	Electrophoresis	291
	Size and Shape of Macromolecules	301
	Summary	302
	References, Suggested Reading, Problems	307
7	Kinetics: Rates of Chemical Reactions	315
	Kinetics	316
	Reaction Mechanisms and Rate Laws	341
	Temperature Dependence	354
	Transition-State Theory	357
	Electron Transfer Reactions: Marcus Theory	360
	Ionic Reactions and Salt Effects	362
	Isotopes and Stereochemical Properties	363
	Very Fast Reactions	372
	Photochemistry and Photobiology	374
	Photosynthesis	378
	Summary	381
	Mathematics Needed for 7	387
	References, Suggested Reading, Problems	387
8	Enzyme Kinetics	401
	Enzyme Kinetics	403
	Michaelis-Menten Kinetics	406
	Competition and Inhibition	415
	Summary	423
	Mathematics Needed for 8	425
	References, Suggested Reading, Problems	425
9	Molecular Structures and Interactions: Theory	437
	The Process of Vision	438
	Origins of Quantum Theory	441

	Quantum Mechanical Calculations	446
	Schrödinger's Equation	449
	Particle in a Box	455
	Tunneling	463
	Simple Harmonic Oscillator	465
	Rigid Rotator	468
	Hydrogen Atom	469
	Electron Distribution	470
	Molecular Structure and Molecular Orbitals	489
	Intermolecular and Intramolecular Forces	493
	Noncovalent Interactions	497
	Molecular Dynamics Simulation	514
	Outlook	516
	Summary	517
	Schrödinger's Equation	518
	Some Useful Operators	518
	Mathematics Needed for 9	522
	References, Suggested Reading, Problems	523
10	Molecular Structures and Interactions: Spectroscopy	531
10	Electromagnetic Spectrum	532
	Color and Refractive Index	533
	Absorption and Emission of Radiation	535
	Proteins and Nucleic Acids: Ultraviolet Absorption Spectra	548
	Fluorescence	554
	Optical Rotatory Dispersion and Circular Dichroism	567
	Circular Dichroism of Nucleic Acids And Proteins	573
	Vibrational Spectra, Infrared Absorption, & Raman Scattering	576
	Nuclear Magnetic Resonance	579
	Interactions in Nuclear Magnetic Resonance	583
	Summary	598
	References, Suggested Reading, Problems	601
11	Molecular Distributions & Statistical Thermodynamics	615
11	Binding of Small Molecules by a Polymer	616
	The Random Walk	628
	Helix-Coil Transitions	636
	Statistical Thermodynamics	645
	Summary	659
	Mathematics Needed for 11	662
	References, Suggested Reading, Problems	662
12	Macromolecular Structure & X-Ray Diffraction	667
14	Visible Images	668
	X Rays	668
	Determination of Molecular Structure	684
	Electron Diffraction	698
	Neutron Diffraction	699

Electron Microscopy	700	
Summary	704	
Mathematics Needed for 12	707	
References, Suggested Reading, Problems	708	
Appendix	712	
Answers	725	
Index	728	