\qquad

Work independently. Do not look at others' exams. Do not allow your exam responses to be shared.

1. (45 points) For the following short answer questions, circle ALL correct answers

For a process that can be carried out by either a reversible or an irreversible path, the change in $(\mathbf{P}, \mathbf{T}, \mathbf{V}, \mathbf{q}, \mathbf{E}, \mathbf{H}, \mathbf{w})$ must be the same for both paths.

P,T,V,E,H
A reversible process is one that proceeds by a succession of very small incremental steps, all of which are (at equilibrium, spontaneous, enthalpically and entropically driven).

At equilibrium
The path which produces the maximum work is (reversible / irreversible).
reversible
The heat needed to change the phase of a substance is typically (smaller / larger) than the heat needed to increase its temperature by 10 K .

Larger
$(\Delta \mathbf{H}, \Delta \mathbf{S}, \Delta \mathbf{G}, \Delta \mathbf{E})$ implies constant pressure.
$\Delta \mathrm{H}, \Delta \mathrm{G}$
ΔH equals the heat transferred to the system under constant $(\mathbf{T}, \mathbf{P}, \mathbf{V})$.
Pressure
An ideal gas expands adiabatically against an external pressure of $2 \mathrm{~atm} . \Delta \mathrm{E}$ for the system is (greater than zero / equal to zero / less than zero).

Less than zero
An ideal gas expands isothermally against an external pressure of $2 \mathrm{~atm} . \Delta \mathrm{E}$ for the system is (greater than zero / equal to zero / less than zero).

Zero
An ideal gas expands adiabatically into a vacuum. $\Delta \mathrm{E}$ for the system is (greater than zero / equal to zero / less than zero).

Zero
When a sample of liquid is converted reversibly to its vapor at its normal boiling point, $(\mathbf{q}, \mathbf{w}, \Delta \mathbf{P}, \Delta \mathbf{V}, \Delta \mathbf{T}, \Delta \mathbf{E}, \Delta \mathbf{H}, \Delta \mathbf{S}, \Delta \mathbf{G})$ is equal to zero for the system .
$\Delta \mathrm{T}, \Delta \mathrm{G}$
According to the $2^{\text {nd }}$ law of thermodynamics, a spontaneous process, such as a balloon filled with a hot gas cooling to the surroundings at constant pressure, will always occur
(adiabatically, reversibly, irreversibly, without work done).
Irreversibly
The internal energy of an ideal gas is a function of only ($\mathbf{T} / \mathbf{P} / \mathbf{V}$).
T
For a sample of an ideal gas, the product PV remains constant as long as (T / P / V) is held constant.

$$
\mathrm{T} \quad(\mathrm{PV}=\mathrm{nRT})
$$

The $2^{\text {nd }}$ law of thermodynamics states that the entropy of a (closed / isolated / isothermal) system always increases during a (spontaneous / equilibrium / unfavorable) process .
isolated
\qquad
2. (25 points) Two 1 liter containers initially containing, respectively, H_{2} and Xe gas, are separated by a valve. Considering the entire assembly to be the system, for each of the system variables below, indicate whether that value will
 be less than zero, greater than zero, or equal to zero, for the process which accompanies opening of the valve between the containers.
a)

System variable correct answer	Circle corre\|	Assumptions/comments
q	$<=>$	$>$
w	$<$	$=$
$>$	0	$=0$
$\Delta \mathrm{H}$	$<$	$>$
$\Delta \mathrm{E}$	$<$	$=$
$>$	0	$=0$
$\Delta \mathrm{~S}$	$<$	$=$
$>$	0	>0
$\Delta \mathrm{G}$	$<$	$=$

b) Explain in 30 words or less, your answer for $\Delta \mathrm{E}$.

The system is the entire assembly. Since the total pressure and the total volume (of the system) do not chang, $T=\frac{P V}{n R}$ does not change. Therefore $\Delta \mathrm{E}$ does not change
c) Explain in 40 words or less, your answer for $\Delta \mathrm{S}$, focusing on the molecular explanation what does it mean?

Although, the pressures don't change, in the original situation each gas was restricted to its own container. Afterwards, the gases have more places to be / ways to arrange themselves. Entropy goes up.
\qquad

3a. (15 points) Calculate $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ when 1 mole of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is cooled irreversibly at constant P from $120^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& C=\frac{d q}{d T} \quad \Delta H=\mathrm{q}_{\mathrm{P}}=\int_{q_{1}}^{q_{2}} d q=\int_{T_{1}}^{T_{2}} n \bar{C} d T=n \bar{C} \int_{T_{1}}^{T_{2}} d T=n \bar{C}\left(T_{2}-T_{1}\right) \\
& \Delta H=(1 \text { mole })\left(33.76 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(373 \mathrm{~K}-393 \mathrm{~K})=-675 \mathrm{~J}=-0.675 \mathrm{~kJ} \\
& d S=\frac{d q_{r e v}}{T}=\frac{C d T}{T} \quad\left(C=\frac{d q}{d T}\right) \\
& \int_{S_{1}}^{S_{2}} d S=\int_{T_{1}}^{T_{2}} \frac{C d T}{T}=C \int_{T_{1}}^{T_{2}} \frac{d T}{T} \\
& S_{2}-S_{1}=\Delta S=n \bar{C} \ln \frac{T_{2}}{T_{1}}=(1 \text { mole })\left(33.76 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln \frac{373 \mathrm{~K}}{393 \mathrm{~K}}=-1.76 \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

$3 b$. (15 points) Calculate $\mathrm{q}, \mathrm{w}, \Delta \mathrm{E}, \mathrm{T}$, and the final volume for the reversible, isothermal expansion of 2 moles of an ideal gas from an initial pressure of 1 atm and an initial volume of 1 L , to a final pressure of 0.1 atm .
$\Delta E=0 \quad$ (isothermal)
$n_{1}=2$ mole $\quad P_{1}=1 \mathrm{~atm} \quad V_{1}=1 \mathrm{~L} \quad T_{1}=\frac{P_{1} V_{1}}{n_{1} R}=\frac{(1 \mathrm{~atm})(1 \mathrm{~L})}{(2 \text { mole })\left(0.08206 \mathrm{Latm} \mathrm{K}^{-1} \mathrm{~mole}^{-1}\right)}=6.1 \mathrm{~K}$
$n_{2}=2$ mole $\quad \mathrm{T}=\mathrm{T}_{2}=T_{1} \quad P_{2}=0.1 \mathrm{~atm}$
$V_{2}=\frac{n_{2} R T_{2}}{P_{2}}=\frac{(2 \text { mole })\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}\right)(6.1 \mathrm{~K})}{(0.1 \mathrm{~atm})}=10.0 \mathrm{~L}$
$w=-\int_{V_{1}}^{V_{2}} P d V=-\int_{V_{1}}^{V_{2}} \frac{n_{2} R T}{V} d V=-n_{2} R T \int_{V_{1}}^{V_{2}} \frac{d V}{V}=-n_{2} R T \ln \frac{V_{2}}{V_{1}}$
$w=-(2 \mathrm{~mol})\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(6.1 \mathrm{~K}) \ln \frac{10.0 L}{1 L}=-233 \mathrm{~J}$
$q=-w=233 J$

