Due Friday, 9/17/99, in class.

Show your work. Problem sets will be spot graded. Work must be shown.

$$
\mathrm{R}=0.08206 \text { liter atm K}{ }^{-1} \mathrm{~mole}^{-1}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}
$$

1. Calculate the work of expansion of an ideal gas from 1 L to 4 L under the following conditions (a and b):
(a) The gas expands against a constant $\mathrm{P}_{\mathrm{ext}}=1$ atm (ie., you suddenly remove blocks holding the piston); the initial temperature is $25^{\circ} \mathrm{C}$.
(b) The expansion is done reversibly, at a constant temperature of $25^{\circ} \mathrm{C}$. The final pressure is 1 atm .
(c) Does (a) or (b) do more work?
(d) Show how you convert your answers to parts (a) and (b) from L-atm to Joules.
2. Tinoco, Sauer, and Wang, $3^{\text {rd }}$ Ed. - Chapter 2, Problem 6
3. Tinoco, Sauer, and Wang, $3^{\text {rd }}$ Ed. - Chapter 2, Problem 7
4. Tinoco, Sauer, and Wang, $3^{\text {rd }}$ Ed. - Chapter 2, Problem 8
5. Tinoco, Sauer, and Wang, $3^{\text {rd }}$ Ed. - Chapter 2, Problem 10
6. Tinoco, Sauer, and Wang, $3^{\text {rd }}$ Ed. - Chapter 2, Problem 16
7. Tinoco, Sauer, and Wang, $3^{\text {rd }}$ Ed. - Chapter 2, Problem 4
