Due Friday, 9/24/99, in class.

Show your work. Problem sets will be spot graded. Work must be shown.

$$
\mathrm{R}=0.08206 \text { liter atm } \mathrm{K}^{-1} \mathrm{~mole}^{-1}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}
$$

1. Differentiate the following:
a) $\mathrm{PV}=\mathrm{nRT} \quad \mathrm{P}$ with respect to T
b) $\mathrm{PV}=\mathrm{nRT} \quad \mathrm{P}$ with respect to V
c) $z=e^{a x} \quad z$ with respect to x
d) $\mathrm{q}=\mathrm{e}^{-\mathrm{Ei} k T} \quad \mathrm{q}$ with respect to T
e) $\mathrm{q}=\sum \mathrm{e}^{-\mathrm{Ei} k T} \quad \mathrm{q}$ with respect to T

2. T,S,\&W Ch 2 Pb 12

(a) 18 g ice cube warmed from -20 to $0^{\circ} \mathrm{C}$ without melting:
$\mathrm{q}=\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=\mathrm{C}_{\mathrm{p}}($ ice $)(0+20)=(2.113 \mathrm{~kJ} / \mathrm{kgK})(.018 \mathrm{~kg})(20 \mathrm{~K})=0.761 \mathrm{~kJ}$
(b) 18 g ice cube melting at $0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$:
$\mathrm{q}=\Delta \mathrm{H}_{\text {melting }}=(6.007 \mathrm{~kJ} / \mathrm{mole})($ mole $/ 18 \mathrm{~g})(18 \mathrm{~g})=6.007 \mathrm{~kJ}$

(c) 18 g ice cube $\left(-20^{\circ} \mathrm{C}\right)$ into 180 g water $\left(20^{\circ} \mathrm{C}\right)--$ what is final state?

The ice will melt, with $\Delta \mathrm{V} \approx 0$ so $\mathrm{w}=0$. Need to determine final temperature of 198 g water.
q gained by ice $=\mathrm{q}$ lost by water since container is insulated (no q flow out of system)
let $\mathrm{T}_{\mathrm{f}}=$ final temperature
qice $=$ warming -20 to $0(a)+$ melting $(b)+$ warming 0 to $T_{f}=761 \mathrm{~J}+6007 \mathrm{~J}+\mathrm{C}_{\mathrm{p}}($ water $) \Delta \mathrm{T}$
qice $=6768 \mathrm{~J}+(18 \mathrm{~g})(4.18 \mathrm{~kJ} / \mathrm{kgK})\left(\mathrm{T}_{\mathrm{f}}-273 \mathrm{~K}\right)$
q $_{\text {water }}=$ cooling 20 to $\mathrm{T}_{\mathrm{f}}=\mathrm{C}_{\mathrm{p}}($ water $) \Delta \mathrm{T}=(180 \mathrm{~g})(4.18 \mathrm{~kJ} / \mathrm{kgK})\left(\mathrm{T}_{\mathrm{f}}-293 \mathrm{~K}\right)$
qice $=-q_{\text {water }} \quad$ note $\mathrm{kJ} / \mathrm{kg}=\mathrm{J} / \mathrm{g}$
$6768 \mathrm{~J}+(75.2 \mathrm{~J} / \mathrm{K})\left(\mathrm{T}_{\mathrm{f}}-273 \mathrm{~K}\right)=-(752 \mathrm{~J} / \mathrm{K})\left(\mathrm{T}_{\mathrm{f}}-293 \mathrm{~K}\right)$
$6768 \mathrm{~J}-20529.6 \mathrm{~J}-220336 \mathrm{~J}=-\mathrm{T}_{\mathrm{f}}(752+75.2) \mathrm{J} / \mathrm{K}$
$(-234097.6 \mathrm{~J}) /(827.2 \mathrm{~J} / \mathrm{K})=-\mathrm{T}_{\mathrm{f}}$
$\mathrm{T}_{\mathrm{f}}=283 \mathrm{~K}=10^{\circ} \mathrm{C}$
Final state is 198 g liquid water at $10^{\circ} \mathrm{C}$.

3. T,S,\&W Ch 2 Pb 24

$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
(a) $\quad \Delta \mathrm{H}^{0}(298)=\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{CH}_{4}(\mathrm{~g})\right)+(1 / 2) \Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{O}_{2}(\mathrm{~g})\right)-\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})\right)$
$\Delta \mathrm{H}^{0}(298)=-74.81 \mathrm{~kJ} / \mathrm{mole}^{2}+0-(-238.57 \mathrm{~kJ} / \mathrm{mole})=163.76 \mathrm{~kJ} / \mathrm{mole}$
(b) $\quad \Delta \mathrm{E}^{0}(298)=\Delta \mathrm{H}^{0}(298)-\Delta \mathrm{nRT}$
$\Delta \mathrm{E}^{0}(298)=163.76 \mathrm{~kJ} /$ mole $-(1.5-0)(8.3145 \mathrm{~J} /$ Kmole $)(298 \mathrm{~K})\left(10^{-3} \mathrm{~kJ} / \mathrm{J}\right)$
$\Delta \mathrm{E} 0(298)=160.04 \mathrm{~kJ} /$ mole
$\Delta H_{773}^{0}=\Delta H_{298}^{0}+\int_{298}^{773} \Delta C_{p} d T$
(c) $\quad \Delta C_{p}=C_{p}\left(C H_{4}\right)+\frac{1}{2} C_{p}\left(O_{2}\right)-C_{p}\left(C H_{3} O H\right)$

4. T,S,\&W Ch 2 Pb 35

This is a simple problem. In the same way that the book discusses estimating bond energies from energetics of relevant reactions, this problem is showing that we can estimate the steric energy in cis vs. trans by comparing the energetics of the reaction

$$
\text { cis-2-butene } \rightarrow \text { trans-2-butene }
$$

The enthalpy of this is: $(-11.1)-7.0=-4.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
So the trans form is lower in enthalpy by $4 \mathrm{~kJ} \mathrm{~mol}^{-1}$

5. T,S,\&W Ch 3 Pb 9

a) $6 \mathrm{C}(\mathrm{s}$, graphite $)+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$
$\Delta \mathrm{G}^{\circ}{ }_{298}=\Delta \mathrm{G}_{\mathrm{f}, 298}^{\circ}($ benzene $)=129.66 \mathrm{~kJ} \mathrm{~mol}^{-1}$
I would not buy the catalytst. Catalysts cannot change the thermodynamic favorability of a reaction. They can only speed up an otherwise spontaneous process. Consequently, a catalyst can not make this unfavorable reaction favorable.
b) $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\Delta \mathrm{G}^{\circ}{ }_{298}=-2(86.55)+0+2(51.31)=-70.48 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$ The reaction is spontaneous.
c) $3 \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{COOH}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}$ (l)
$\Delta \mathrm{G}^{\circ}{ }_{298}=-3(-50.72)-(-16.45)+0+(-370.24)+4(-237.129)=-1150.15 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The reaction is spontaneous.

6. T,S,\&W Ch 3 Pb 16

a)The values requested are:
$\mathrm{w}=-\mathrm{P}_{\mathrm{m}} \Delta \mathrm{V}_{\mathrm{m}}$
$\Delta \mathrm{E}=\mathrm{q}_{\mathrm{m}}+\mathrm{w}=\mathrm{q}_{\mathrm{m}}-\mathrm{P}_{\mathrm{m}} \Delta \mathrm{V}_{\mathrm{m}}$
$\Delta \mathrm{H}=\mathrm{q}_{\mathrm{m}}$
$\Delta \mathrm{S}=\mathrm{q}_{\mathrm{m}} / \mathrm{T}_{\mathrm{m}}$
$\Delta \mathrm{G}=0$
b) $\Delta H=q_{m}+\left(C_{p}^{\beta}-C_{p}^{\alpha}\right)\left(T^{*}-T_{m}\right)$
$\Delta S=\frac{q_{m}}{T_{m}}+\left(C_{p}^{\beta}-C_{p}^{\alpha}\right) \ln \frac{T^{*}}{T_{m}}$
c) Simply plugging in to equations in (a):
$\Delta \mathrm{G}=0$

```
\DeltaH=638 kJ mol
\DeltaS =(638 \mp@subsup{\textrm{kJ mol}}{}{-1})/343 K = 1.86 \mp@subsup{\textrm{kJ K}}{}{-1}\mp@subsup{\textrm{mol}}{}{-1}
d) Using equations from (b)
HH=638 kJ mol
\DeltaS=1.86 kJ K
\Delta \mathrm { G } = \Delta \mathrm { H } - \mathrm { T } \Delta \mathrm { S } = 7 3 . 9 \mathrm { kJ } \mathrm { mol } ^ { - 1 }
```

e) Think this one through. $\Delta \mathrm{V}_{\mathrm{m}}>0$ means that volume increases with $\alpha \rightarrow \beta$. Therefore, increasing pressure will push the reaction to the left (towards the smaller α phase). This will require a higher T_{m}. f) We can draw the cycle below:

Both phase transitions are said to occur under equilibrium, so that:
$\Delta \mathrm{G}_{\mathrm{Tm}, \mathrm{Pm}}=0$
$\Delta \mathrm{G}_{\mathrm{T} *, 1000}=0$
And from the cycle at left, we have:
$\Delta G_{T_{m}, P_{m}}=G_{\alpha}+\Delta G_{T_{m}, P_{m}}+G_{\beta}$
$0=G_{\alpha}+0+G_{\beta}$
$G_{\alpha}=\int_{P_{m}}^{1000} V_{\alpha} d P-\int_{T_{m}}^{T^{*}} S_{\alpha} d T=V_{\alpha}\left(1000-P_{m}\right)+S_{\alpha, T_{m}}-C_{p}^{\alpha} \ln \frac{T^{*}}{T_{m}}$
$G_{\beta}=\int_{1000}^{P_{m}} V{ }_{\beta} d P-\int_{T^{*}}^{T_{m}} S_{\beta} d T=V_{\beta}\left(P_{m}-1000\right)-S_{\beta, T_{m}}-C_{p}^{\beta} \ln \frac{T_{m}}{T *}$
$0=V_{\alpha}\left(1000-P_{m}\right)+V_{\beta}\left(P_{m}-1000\right)-S_{\beta, T_{m}}+S_{\alpha, T_{m}}-C_{p}^{\alpha} \ln \frac{T^{*}}{T_{m}}-C_{p}^{\beta} \ln \frac{T_{m}}{T^{*}}$
$0=\left(V_{\beta}-V_{\alpha}\right)\left(P_{m}-1000\right)-\Delta S_{T_{m}}+\left(C_{p}^{\beta}-C_{p}^{\alpha}\right) \ln \frac{T^{*}}{T_{m}}$
$0=\Delta V\left(P_{m}-1000\right)-\Delta S_{T_{m}}-\Delta C_{p} \ln \frac{T_{m}}{T^{*}}$
From this, we can solve for T^{*}

7. T,S,\&W Ch 3 Pb 18

a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}$ (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCOOH}(\mathrm{g})$
b) $\Delta \mathrm{H}^{\circ}=-785.34-2(-362.63)=-60.08 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta \mathrm{S}^{\circ}=347.7-2(251.0)=-154.3 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\Delta \mathrm{G}^{\circ}=-60.08 \mathrm{~kJ} \mathrm{~mol}^{-1}-(298 \mathrm{~K})\left(-0.1543 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)=-14.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $\Delta \mathrm{H}^{\circ}($ single H -bond $)=-60.08 / 2=-30.04 \mathrm{~kJ} \mathrm{~mol}^{-1}$

The entropy change involves changes in both translational and rotational entropy. It is not simple to separate these, as it is the H-bond enthalphy.

Extra - don't turn in - think about the questions posed in Ch 3 Pb 22 .

