
Problem Set #4 Chem 471 Fall 1999

Due Friday, 10/15/99, in class.

Show your work. Problem sets will be spot graded. Work must be shown.

R = 0.08206  liter atm K-1 mole-1 = 8.314 J K-1 mole-1

1. T,S,&W Ch 4 Pb 4
But note a "typo" - the equation should read:

a) ATP + H2O + 2 glucose (out) → 2 glucose (in) + ADP + Pi

Separating this into:

ATP + H2O → ADP + Pi ∆G°' = -31.0 kJ mol–1

And

2 glucose (out) → 2 glucose (in) ∆G°' = 0.0 kJ mol–1

(because in a simple world, glucose inside has the same energy as glucose outside)

Thus, ∆G°' for the entire reaction is -31.0 kJ mol–1

K = e− ∆G°'
RT = 2.72x105 = glucos e(in)[ ]2

ADP[ ] Pi[ ]
glucose(out)[ ]2

ATP[ ]

2.72x105 =
glucose(in)[ ]2 1x10−2( ) 1x10−2( )

glucose(out)[ ]2
1x10−2( )

glu cose(in)[ ]
glu cose(out)[ ]

=
2.72x105( ) 1x10−2( )
1x10−2( ) 1x10−2( )

 

 
 

 

 
 

1
2

= 5200

b) The answer would then be

glu cose(in)[ ]
glu cose(out)[ ]

=
2.72x105( ) 1x10−2( )
1x10−2( ) 1x10−2( )

 

 
 

 

 
 = 2.7x107

c) Remember that K is really the ratio of activity coefficients.
As an example, assume γGluc(in) = 0.9 (and assuming γGluc(out) = 1) then:

5200 =
aglu cos e (in)

aglu cos e (out)

= glu cose ( in)cglu cose( in )

glu cos e( out )cglu cos e(out )

=
0.9( )cglu cos e (in )

1.0( )cglu cos e( out )

Leading to:
cglu cos e( in )

cglu cos e( out )

=
1.0

0.9
5200

The gradient would be larger.

Think about this based on what γ really means and on your understanding of Le Chatelier.



2. T,S,&W Ch 4 Pb 6

The plot shown at right shows ln K vs. 1/T
(remember temperature is in Kelvin). The plot
should follow:

ln K = −
∆Ho

R

1

T
 
 

 
 +

∆So

R

So, since the slope equals -60.64

− ∆Ho

R
= −60.04K

∆Ho = 60.04K 8.3144 J mol− 1 K −1( ) = 0.499 kJ mol− 1

So, since the intercept equals -1.652

∆So

R
= −1.652

∆So = −1.652 8.3144 J mol− 1 K−1( ) = −13.74 J mol−1  K−1

So at T=25°C=298K

∆G° = ∆H ° −T∆S°

499 J mol−1 − 298K( ) 8.3144 J mol−1 K− 1( ) = −1979 J mol−1 = −1.979 kJ mol−1

3. T,S,&W Ch 4 Pb 12

a) ∆G° = −RT ln K = − 8.314 J K −1 mol−1( ) 298K( ) ln1 .80x10−5( ) = 27.15 kJ mol−1

b) It's equilibrium, ∆G = 0.0

c) We use the simple equation:

∆G = ∆G° + RT ln
HOAc[ ]

H+[ ] OAc−[ ]
= −27.15 kJ mol−1 + 8.314 J K −1  mol−1( ) 298K( ) ln

1M
10−4 M( ) 10−2 M( ) = 7.07 kJ  mol−1

d) This time:

∆G = ∆G° + RT ln
HOAc[ ]

H+[ ] OAc−[ ]
= −27.15 kJ mol−1 + 8.314 J K −1  mol−1( ) 298K( ) ln

1.0x10−5 M
10−4M( ) 10−2 M( ) = −21.45 kJ mol−1

e) From the above, we have:

H+ (10-4 M)  +  OAc (10-2 M)  →  HOAc (1 M) ∆G = 7.07 kJ mol–1

And H+ (10-4 M)  +  OAc (10-2 M)  →  HOAc (10–5 M) ∆G = -21.45 kJ mol–1
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Problem 6

ln
K

1/T

Y = M0 + M1*X

-1.652M0
-60.643M1

0.99995R



The desired reaction is:

HOAc (1 M)  →  HOAc (10–5 M)

Adding the reverse of the top equation to the lower equation as written, we get the desired
reaction with ∆G = (–7.07 kJ mol–1 ) + (–21.45 kJ mol–1) = –28.5 kJ mol–1

4. T,S,&W Ch 4 Pb 16

Native ↔  Denatured K = (D)/(N)

K(T1 = 50˚C) =
2.57 ×10−6

9.97 ×10−4 ,  K(T2 = 100˚C) =
1.4 ×10−4

8.6 ×10−4

ln
K2

K1

=
−∆H˚

R

1

T2

−
1

T1

 
 
  

 
 ⇒

∆H˚= −R ln
K2

K1

1

T2

−
1

T1

 
 
  

 
 

−1

∆H˚= −8.314J
moleK

ln
1.4 ×10−4

8.6 ×10−4 × 9.97 ×10−4

2.57 ×10−6

 
  

 
  

1
373K

− 1
323K

 
 

 
 

−1

∆H˚= 83kJ / mole

5. T,S,&W Ch 4 Pb 17

(a) single-stranded (SS) ↔ hairpin loop (H)

2 equations in 2 unknowns: K1 = (H)/(SS) = 0.86 @ 25˚C

(H) + (SS) = 1 x 10-3 M = 1 mM

(H) = 0.86(SS)--> (SS)[1+0.86] = 1 x 10-3 M

(SS) = 5.38 x 10-4 M = 0.538 mM

(DS) = 4.62 x 10-4 M = 0.462 mM

Increasing the concentration has no effect: the equilibrium is not shifted, since the number of
products and reactants are the same.

(b) K1 = (H)/(SS) = 0.51@ 37˚C; T2 = 37˚C = 310K, T1 = 25˚C = 298K

∆H˚= −R ln
K2

K1

1

T2

−
1

T1

 
 
  

 
 

−1

∆H˚= −8.314J
moleK

ln
0.51
0.86

 
 

 
 

1
310K

− 1
298K

 
 

 
 

−1

∆H˚= −33.4kJ / mole

∆G˚(310)= −RT ln K =
−8.314J

moleK
(310K) l n 0 . 5 1

∆G˚(310)=1.74kJ / mole

∆S˚=
∆H˚−∆G˚

T
=

(−33.4 −1.74)kJ / mole

310K
∆S˚= −113J / moleK

This calculation assumes that ∆H˚ and ∆S˚ are independent of temperature.



(c) 2A6C6U6  ↔ double stranded loop

this reaction is 2 SS or H ↔ DS, so

K2 = (DS)/[(SS) + (H)]2 = 10-2 M-1 @ 25˚C

total concentration (in terms of single strands, so count DS twice)

(SS) + (H) + 2(DS) = 0.1 M

K1 = (H)/(SS) = 0.86 @ 25˚C

Above are the 3 equations in 3 unknowns:

K1 equation gives (H) = 0.86(SS)

with K2 equation gives (DS) = 10-2[(H) + (SS)]2 = 10-2[(SS)(0.86 + 1)]2

both into K3 equation gives 0.1 = (SS) + 0.86 (SS) + 10-2(SS)21.862

(SS)21.862 x10-2 + (SS)(1 .86) - 0.1 = 0

Solve with quadratic formula:

(SS) = [-1.86 ±(1.862 +0.4 x 1.862 x10-2)1/2](2 x 1.862 x10-2)-1

only + gives you a positive concentration, so

(SS) = 0.054 M

(H) = 0.046 M

(DS) = 0.0001 M

6. T,S,&W Ch 4 Pb 18

[Fe(CN)64-]/[Fe(CN)63-] = 2 and [cyt fred]/[cyt fox]= 0.1 at 25˚C, pH 7

(a) 2 half reactions:

Fe(CN)63- + e- --> Fe(CN)64- E˚' = 0.440 V

cyt fred    --> cyt fox + e- E˚' = - E˚'(cyt f)

sum reactions:

Fe(CN)63- + cyt fred --> Fe(CN)64- + cyt fox

E˚' = 0.440 V - E˚'(cyt f) = (RT/nF) lnK

K = Fe(CN)64-][cyt fox]/[Fe(CN)63-][cyt fred] = 2 x (0.1)-1 = 20

˚' =
8.314J(298K)

moleK (1mole e × 96, 485C / mole e)
l n 2 0

Note 1 J =  1C x 1V,  so C = J/ V
˚' = 0.077V

E˚'(cyt f) = 0.440 V - E˚' = 0.440 V - 0.077 V = 0.363 V = E˚'(cyt f)

(b) The reduction potential for

O2/H2O is 0.816 V, cyt fox/cyt fred is 0.363 V



Spontaneous electron flow goes to the highest reduction potential,

therefore cyt fred (0.363V) to O2 (0.816V) is spontaneous

H2O(0.816V) to cyt fox(0.363V) is not spontaneous

So cyt f is not a strong enough oxidant to oxidize H2O to form O2

(Such a strong oxidant is rare in biology -- it is found in Photosystem II which oxidizes water)

7. T,S,&W Ch 4 Pb 25

(a) P700+ + e- --> P700 E˚' =  0.490 V

A + e-  --> A- E˚' = -0.900 V

So P700 + A   --> P700+ + A- E˚' = -0.490 V -0.900 V = -1.390 V

Negative E˚' means reaction is not spontaneous (electrons flowing to lower potential A).

(b) ∆G˚' = -nFE˚' = (-1)(96,485 J/V) (-1.390 V) = 134.1 kJ/mole

(c) NADP+ + 2H+ + 2e- --> NADPH + H+ E˚' =  -0.350 V

2H+ + 2e-    --> H2 (g) E˚' =  -0.421 V

So NADP+ + H2 (g) --> NADPH + H+

E˚' = -0.350 V - (-0.421 V) = 0.071 V

∆G˚' = -nFE˚' = (-2)(96,485 J/V) (0.071 V) = -13.7 kJ/mole

8. T,S,&W Ch 4 Pb 26

(a) 
= ˚−

RT

nF
ln

[MB(red)]

[MB(ox)][H + ]2

(b) At equilibrium, E for the overall summed reaction is zero,

so E ( red'n MB) = -E (oxid'n unknown) = E (red'n unknown substance). So calculate E (MB):

(MB) = 0.4V − 8.314J(298K)
moleK (2mole e × 96, 485C / mole e)

ln
1 ×10−3

[1×10−7]2

(MB) = 0.075V

9. T,S,&W Ch 4 Pb 28

2 cysteine + 1/2 O2  --> cystine + H2O E˚ = 0.816V - (-0.34V)

E˚ = 1.156 V

(a) (Cysteine) + (cystine) = 0.010 M

E˚ = (RT/nF) lnK,

so K = exp[nFE˚/RT] = (cystine)(H2O)/(Cysteine)2(O2)1/2

(H2O) = 1, (O2)1/2 = 0.21/2

so (cystine)/(Cysteine)2 = 0.21/2 exp[nFE˚/RT]



= 0.21/2 exp[(2)(96,485 J/V) (1.156 V)/(8.314 J/moleK)(298K)]

(cystine)/(Cysteine)2 = 5.7 x 1038

so (cystine) >> (Cysteine), (cystine) ≈ 0.01

(Cysteine)2 = 0.01/5.7 x 1038

(Cysteine) = 4.2 x 10-21

(cystine)/(Cysteine) = 0.01/4.2 x 10-21 = 2.4 x 1018

(b) When the activities of the reactants and products are at their equilibrium values, the reaction
has reached equilibrium, so ∆G = 0.

10. T,S,&W Ch 4 Pb 31

(a) GGGCCC/CCCGGG nearest neighbor terms:

Note that 5'-GG-3'/3'-CC-5'  =  5'-CC-3'/3'-GG-5'

2GG/CC + GC/CG + 2CC/GG = 4 GG/CC + GC/CG

∆G˚ = ∆G˚(initiation) + Σ ∆G˚(nearest neighbors)

∆G˚ = 20.9 kJ/mole + [4(-13) + (-13)] kJ/mole = -44.1 kJ/mole

∆H˚ = ∆H˚(initiation) + Σ ∆H˚(nearest neighbors)

∆H˚ = 0 + [4(-46) + (-46.4)] kJ/mole = -230.4 kJ/mole

∆S˚ = ∆S˚(initiation) + Σ ∆S˚(nearest neighbors)

∆S˚ = -70.3 J/moleK + [4(-110.7) + (-112.1)] J/mole K= -625.2 J/moleK

Check: ∆G˚ = ∆H˚ - T∆S˚ = -230.4 kJ/mole -(298K)(-625.2 J/moleK) = -44.1 kJ/mole -- in
agreement with above

GGTTCC/CCAAGG nearest neighbor terms:

2GG/CC + GT/CA=AC/TG + TT/AA = AA/TT+ TC/AG=GA/CT

∆G˚ = ∆G˚(initiation) + Σ ∆G˚(nearest neighbors)

∆G˚ = 20.9 kJ/mole + [2(-13) + (-5.4) + (-7.9) + (-6.7)] kJ/mole

∆G˚ = -25.1 kJ/mole

∆H˚ = ∆H˚(initiation) + Σ ∆H˚(nearest neighbors)

∆H˚ = 0 + [2(-46) + (-27.2) + (-38.1) + (-23.4)] kJ/mole

∆H˚ = -180.7 kJ/mole

∆S˚ = ∆S˚(initiation) + Σ ∆S˚(nearest neighbors)

∆S˚ = -70.3 J/moleK + [2(-110.7) + (-73.2) + (-101.3) + (-56)] J/mole K

∆S˚ = -522.2 J/moleK

Check: ∆G˚ = ∆H˚ - T∆S˚ = -180.7 kJ/mole -(298K)(-522.2 J/moleK) = -25.1 kJ/mole -- in
agreement with above

(b)



self-complemetary strands --> Tm = ∆H˚/(∆S˚ + Rlnc); c= 1 x 10-4

Tm = -230.4 kJ/mole/[-625.2 J/moleK + 8.314J/moleK ln(1 x 10-4)]

Tm = 328K = 55˚C

non-self-complemetary strands --> Tm = ∆H˚/(∆S˚ + Rln(c/4)) ; c= 2 x 10-4

Tm = -180.7 kJ/mole/[-522.2 J/moleK + 8.314J/moleK ln(0.5 x 10-4)]

Tm = 299 K = 26˚C

11.  Ice skating is possible because ice melts under the skate blade, providing a thin lubricating layer of
liquid water. Briefly explain in terms of thermodynamics why the ice melts (neglect friction) and
why such skating is not possible on many other surfaces. Use a partial derivative of G in your
explanation.

Consider the phase change of the melting of water (s→l) which has a ∆V<0 (water expands on

freezing, and so contracts on melting). 
∆G

P

 
 

 
 

T

= ∆V , so ∆G decreases with increasing

pressure (think Le Chatelier) -- the melting of ice becomes more favorable under the
pressure of the skate blade. The liquid water then provides the lubrication needed for
smooth skating over the surface of the solid ice. This would suggest that smooth skating is
thus only possible on materials which expand upon freezing -- which is unusual.

This is a classic (and interesting!) problem. I've heard criticisms of this explanation, but don't
remember them. Anyone know any?


