
Problem Set #7 Chem 471 Fall 1999
Due Monday, 11/29/99, in class.

Show your work. Problem sets will be spot graded. Work must be shown.

R = 0.08206  liter atm K-1 mole-1 = 8.314 J K-1 mole-1

h = 6.626 x 10–34  J s                c = 2.9979 x 108 m s-1

1. T,S,&W Ch 7 Pb 7

a)  Steady state of B tells us that:

dB
dt

= 0 = k1A − k2B − k3BC = k1A − k2 + k3C( )B

∴ B =
k1

k2 + k3C
A

dD

dt
= k3BC =

k1k3

k2 + k3C
AC

b)  Fast (or "pre-") equilibrium dictates:

K = AB[ ]
A[ ] B[ ]

           AB[ ] = K A[ ] B[ ]

d D[ ]
dt

= k AB[ ] C[ ] = kK A[ ] B[ ] C[ ]

Note that in this case, it was important not to drop the bracket [X] notation, in order to avoid
confusion.



2. T,S,&W Ch 7 Pb 9

a) As discussed on p. 371, we plot the data for k1,
as shown at right. From this plot, we obtain a
slope of -12711 K

slope =−12711 ≈
−Ea

R

Ea = −12711 K( ) 8.314 J K−1mol−1( ) = 106 kJ mol−1

∆H‡ = Ea − RT

∆H‡ =106 kJ mol−1 − 8.314 J K −1mol−1( ) 312K( )
∆H‡ =103 kJ mol−1

From the Arrhenius plot, we have

int ercept = 41.6 = ln A

Then from equation 7.54 (using the average temperature for T)

∆S = R ln
Ah

kBT
−1

 
 
  

 
 = R ln A + ln

h

kBT
−1

 
 
  

 
 

= 8.314 J K−1mol−1( ) 41.6( ) + ln
6.626 x 10–34   J s

1.3807x10−23  J K −1( ) 312K( ) − 1
 

 
 

 

 
 

= 8.314 J K−1mol−1( ) 41.6( ) + −29.5( ) − 1( ) = 92.3 J K−1mol−1

If you used the approximation, you would get 101 J K–1  mol–1 , not far off.

Similarly for k–1 , we plot the data for k-1. From this
plot, we obtain a slope of -29295 K

slope =−29295 ≈
−Ea

R

Ea = −29295 K( ) 8.314 J K −1mol−1( ) = 244 kJ mol−1

∆H‡ = Ea − RT

∆H‡ = 244 kJ mol−1 − 8.314 J K −1mol−1( ) 312K( )
∆H‡ = 241 kJ mol−1

From the Arrhenius plot, we have

int ercept = 95.9 = ln A

Then from equation 7.54
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∆S‡ = R ln
Ah

kBT
−1

 
 
  

 
 = R ln A + ln

h

kBT
−1

 
 
  

 
 

∆S‡ = 8.314 J K−1mol−1( ) 95.9( ) + ln
6.626 x 10–34   J s

1.3807x10−23  J K −1( ) 312K( ) −1
 

 
 

 

 
 

∆S‡ = 8.314 J K−1mol−1( ) 95.9( ) + −29.5( ) − 1( ) = 544 J K−1mol−1

If you used the approximation, you would get 552 J K–1  mol–1 , not far off.

In reality, if the data are fit directly to the equation for k and a more complete statistical analysis is
carried out, one finds that over the temperature range studied, ∆H‡ and ∆S‡ are
interdependent, that is, they cannot be determined independently.

b) For this we return to the temperature dependence of the equilibrium constant, which is simply
the ratio of the two rate constants, at each temperature.

From Chapter 3, we have:

ln K =
∆S0

R
−

∆H 0

RT
The plot at right provides:

slope =16584K = −
∆H 0

R

∆H 0 = − 16584K( ) 8.314 J K−1mol−1( )
∆H 0 = −138 kJ mol−1

int ercept = −54.30 =
∆S0

R

∆S0 = −54.30( ) 8.314 J K−1mol−1( ) =−451 J K−1mol−1

c) Remembering that the base pair donors and acceptors are H-bonded with water in the single
stranded form, one more Watson-Crick pair would mean one more (base-water) bond to
break in forming the transition state. Therefore, ∆H‡ may actually increase slightly (become
more positive). If the H-bonds in the duplex are slightly more favorable than the H-bonds to
water, then adding one more WC pair, will decrease somewhat the overall ∆H for the
reaction.
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3. T,S,&W Ch 7 Pb 10

a) 1st order in A, 0th order in B

At

A0

= e−kt      ln
At

A0

= −kt     k =-
1
t

ln
At

A0

k = -
1

1hr
ln0.9 = 0.105hr-1

At = 2hr

A0

= e
− 0.105hr −1( )2 hr

= 0.81     (81%)

b) 1st order in A, 1st order in B, but with equimolar starting conc's of A and B

1

CA
t −

1

CA
0 = kt      k =

1

t

1

CA
t −

1

CA
0

 
 
  

 
 =

1

t

1
CA

t

CA
0

−
1

1

 

 

 
 

 

 

 
 

1

CA
0

k =
1

1hr

1

0.9
−

1

1
 
 

 
 

1

CA
0

= 0.111hr -1( ) 1

CA
0

CA
t =

1

CA
0 + kt

 
 
  

 
 

−1

CA
t =2hr = 1

CA
0

+ 0.111hr-1( ) 1
CA

0

 
  

 
  2hr( )

 

 
  

 
 

−1

= 1+ 0.222( )−1CA
0

CA
t =2 hr

CA
0

= 0.82     (82%)

c) 0th order in A, 0th order in B

At − A0 = −kt     k = -
1
t

At − A0( ) = -
1
t

At

A0

−1
 
 
  

 
 A0

k = − 1

1hr
0.9 −1( )A0 = 0.10hr−1( )A0

At = 2 hr = A0 − 0.10hr −1( )A0 2hr( ) = A0 − 0.2A0

At = 2hr

A0

= 0.80     (80%)



d) 1st order in A, 1/2 order in B, but again, equimolar starting concentrations

Looks like:  v = kA1.5

1

n −1

1

At
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0.5

−
1

A0
0.5
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 A0

−0.5 = 1

1hr

1

0.5
0.9( )−0.5 − 1[ ]A0

−0.5 = 0.108hr−1( )A0
−0.5

1

At
0.5 =

1

A0
0.5 + 0.5kt

A0
0.5

At
0.5

= 1 + A0
0.50.5kt       

At

A0

 
 
  

 
 

0.5

= 1+ A0
0.50.5kt( )−1

      
A t

A0

= 1 + A0
0.50.5kt( )−2

A t=2hr

A0

= 1 + A0
0.50.5 0.108hr −1( )A0

− 0.5( ) 2hr( )( )−2

= 1+ 0.5 0.108hr−1( )( ) 2hr( )( )−2

= 1 + 0.108( )−2 = 0.81     (81%)

4. T,S,&W Ch 7 Pb 15

a)  
dB

dt
= k1A − k4 B − k−1B + k2C − k−2 B

b)  Fast equilibrium:

B
A

= K1        
C
A

= K3        
B
C

= K2

B = K1A        C = K3 A 

This problem appears more complicated than it is. First, K1, K2, and K3 are not all independent
(only 2 are). Second, we really only need the first expression above. The reaction is then just
like other fast equilibrium reactions dealt with in the text.

dP

dt
= k4B = k4K1A

c)  At time equals zero, we allow equilibrium to be set up. Let's redefine the book's
nomenclature: AT is the total, starting concentration of A. A0 is the concentration of A at time
close to 0, but after equilibrium is established.

Now, with time, P is formed and:



B = K1A        C = K3 A     AT = A + B + C + P

AT = A + K1 A + K3 A + P = 1+ K1 + K3( )A + P

A =
AT − P

1+ K1 + K3

     B =
K1 AT − P( )
1+ K1 + K3

∴
dP

dt
= k4B = k4

K1 AT − P( )
1+ K1 + K3

dP
AT − P( ) = k4 K1dt

1 + K1 + K3

AT − P( )−1
dP =∫ k4K1

1 + K1 + K3

dt∫
To do this integral, we brush off our calculus texts and find that we simply set:

Q = AT − P      dQ = −dP

− Q −1dQ =∫
k4K1

1+ K1 + K3

dt∫

− lnQ = − ln AT − P( ) = ln
1

AT − P( ) =
k4K1

1 + K1 + K3

t + C

At time=0, we have:

ln
1

AT − 0( ) = k4 K1

1 + K1 + K3

0( ) + C

C = ln
1
AT

Therefore:

ln
1

AT − P( ) =
k4K1

1 + K1 + K3

t + ln
1

AT

ln
AT

AT − P( ) =
k4K1

1 + K1 + K3

t

This would be sufficient, but let's take it further:

AT

AT − P( ) = e
k4 K1

1+ K1 + K3

t

AT − P = ATe
−k 4K1

1+ K1 + K3

t

P = AT − ATe
−k 4K1

1+ K1 + K3

t

= AT 1 − e
−k 4K1

1+ K1 + K3

t 

 
 

 

 
 



5. T,S,&W Ch 7 Pb 18

a) The reaction is first order in A. A two-fold
drop from 40 to 20 nM takes 311 s, while a
two-fold drop from 20 to 10 nM takes 310 s.
The data and a direct fit to first order kinetics
are shown at right. The best fit rate constant
(k1) is 0.00223 s–1 . (You can also do this by
linearization).

a
l
t

ernatively, we could plot the
linearized form:

and we get a slope of -0.002232 s–1

b) 
A k1 →  A*

A* + P k2 →   AP
where the 2nd  step is much faster than the first. The first step is an activation of the reactant A.

The measured k would be k1 above.   
dP

dt
= k1A

To show this mathematically, at steady state:   
dA*

dt
= 0 = k1 A − k2A

*P

So that 
dP

dt
= k2 A*P = k2

k1A

k2

 
 
  

 
 = k1 A

c)

k283 = Ae
−Ea

R 283K( )

k273 = Ae
−Ea

R 273K( )

2 =
k283

k273

=
Ae

− Ea
R 283K( )

Ae
− Ea

R 273K( )
= e

− Ea

R

1

283K
− 1

273K

 

 
  

 

 
  

ln2 = − Ea

R
1

283K
− 1

273K
 
 

 
 = − Ea

8.314 J K −1mol−1
−1.294x10−4  K −1( ) = Ea 1.557x10−5  J−1 mol( )

Ea =
ln2

1.557x10−5  J −1 mol( ) = 44.5 kJ mol−1
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6. T,S,&W Ch 7 Pb 20

k298 = Ae
− Ea

R 298K( )

k308 = 2k298 = Ae
− Ea

R 308K( )

2Ae
−Ea

R 298K( ) = Ae
− Ea

R 308K( )

2e
− Ea

R 298K( ) = e
− Ea

R 308K( )

ln2 − Ea

R 298K( )
= − Ea

R 308K( )

ln2 = Ea

R 298K( )
− Ea

R 308K( )
= Ea

R
1

298K
− 1

308K
 
 

 
 =

Ea

R
3.247x10−3 K−1( )

Ea =
R ln2( )

3.247x10−3 K−1( ) =
8.314 J K −1mol−1( ) ln2( )

3.247x10−3 K−1( ) = 1.77 kJ mol−1

7. T,S,&W Ch 7 Pb 22

a) Given that −
dA

dt
= k1AB

However, B remains constant, so that we could write −
dA

dt
= k1AB = k1

' A

(where k1
' = k1B)

The solution is then that of a first order reaction:

−
dA

dt
= k1

' A                A = A0e
−k1

' t = A0e
− k1 Bt

b) This part recognizes that B is essentially constant.

 

− dA
dt

= k2 AB

−
dA

A
= k2Bdt     but B is constant

−
dA

A∫ = k2 B dt∫
Ao − A = k2Bt

c)

o = −
dA

dt
 
 

 
 

o

−
dA

A
=

k1 AB

1 +
k1A

k2



For low [A],

k1A

k2

<< 1

−
dA

A
=

k1 AB

1 +
k1A

k2

≈
k1AB

1+ 0
= k1AB

For high [A],

k1A

k2

>> 1

−
dA

A
=

k1 AB

1 +
k1A

k2

≈
k1AB

0 +
k1 A

k2

= k2B


