Due Monday, 12/13/99, in class
 (at beginning of in-class help session).

Show your work. Problem sets will be spot graded. Work must be shown.

$$
\begin{aligned}
& \mathrm{R}=0.08206 \text { liter atm K} \mathrm{K}^{-1} \mathrm{~mole}^{-1}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1} \\
& \mathrm{~h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \quad \mathrm{c}=2.9979 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

1. T,S,\&W Ch 8 Pb 5
a) Steady state of B tells us that:

$$
\begin{aligned}
& \frac{d B}{d t}=0=k_{1} A-k_{2} B-k_{3} B C=k_{1} A-\left(k_{2}+k_{3} C\right) B \\
& \therefore B=\frac{k_{1}}{k_{2}+k_{3} C} A \\
& \frac{d D}{d t}=k_{3} B C=\frac{k_{1} k_{3}}{k_{2}+k_{3} C} A C
\end{aligned}
$$

2. T,S,\&W Ch 8 Pb 6
3. T,S,\&W Ch 8 Pb 19, parts (a), (b), (c), and (e)
