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Chem 728 Lecture Notes
The following are lecture notes for Chem 728 (by C. Martin Fall 1995, with minor
modifications by L. Thompson). Much of the material is taken directly from the indicated
references (old vH, some refs updated to new). This is not intended to replace the original
references, but is made available solely for the convenience of students in the class.

Ligand Binding and Related Equilibria
The simplest ligand binding reaction can be written:   P + L ´ PL  with  

† 

K =
[PL]

[P][L]

† 

v = #  moles ligand bound
#  moles protein =

[LB ]
[P] + [PL] =

[LB ]
[PT ]       =

[PL]
[P] + [PL]

For the simple case described above, it will range from 0 to 1.

  Methods of measurement
Equilibrium Dialysis:

For the binding of a small molecule (ligand, L) to a large
macromolecule (protein, P), we can often measure binding via a
technique called equilibrium dialysis. The requirements are:

1) a semiporous dialysis membrane to which L is freely permeable and P
is not

2) a method for detecting [Lout] and/or [Lin] - a radioactive tag on L is
most commonly used.

Perturbation of Ligand or Protein
Alternatively, if we can measure a perturbation which occurs on binding, we can readily

measure the fraction saturation 

† 

q =
v 
n =

DObs
DObsT

This measurement assumes  

† 

v  is linear in Obs and is the same for different binding
sites. Note that for n=1, 

† 

v =q.

  Theoretical Treatment
Single Site per Macromolecule (n=1)

P + L ´ PL     

† 

Ka =
[PL]

[P][L]       Kd =
[P][L]
[PL] =

1
Ka

The equilibrium can be expressed either as an association (Ka) or a dissociation (Kd).

† 

v = [PL]
[P] + [PL]

=
1

[P]
[PL]( ) +1

=
1

[P]
Ka [P][L]

Ê 
Ë 

ˆ 
¯ +1

v = Ka[L]
1+ Ka[L]

=
[L]

1
Ka

+ [L]
=

[L]
Kd + [L]

Always!check the behavior of your equation at simple, extreme limits:
Various results:  as [L]Æ∞, 

† 

v Æ1 (makes sense)
also when 

† 

v =0.5, [L]=1/Ka=Kd.
Rearrange to linear function (but watch for distortion of error)

† 

v = Ka[L]
1+ Ka[L]

=
[L]

1
Ka

Ê 
Ë 

ˆ 
¯ + [L]

     then     1
Ka

Ê 
Ë 

ˆ 
¯ + [L] =

[L]
v 

1
[L]Ka

Ê 
Ë 

ˆ 
¯ =

1
v 

-1 =
1- v 

v 
           and      v 

[L]
= Ka 1- v ( )

The last form of the equation is known as a Scatchard Plot.
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Alternatively, 

† 

1
[L]Ka

Ê 
Ë 

ˆ 
¯ =

1- v 
v       leads to        v 

1- v = [L]Ka

Multiple Binding Sites
If we assume, more than one ligand binding site per protein, we have the more general
form:

† 

v = [LB ]
[P] + [PL] =

[LB ]
[PT ]       =

[PL] + 2[PL2 ] + ...+ n[PLn ]
[P] + [PL] + [PL2] + ... + [PLn ]

It should be obvious that as we approach saturation in this case, all protein is pushed to
the [PLn] limit, and this ratio should approach n, the total number of binding sites per
protein.
In equilibrium dialysis, if we know the concentration of protein and can measure the
total concentration of ligand inside the bag (radioactive labeling is frequently
employed), then we can measure this parameter.
P + nL ´ PLn multiple sites, could be same or different, independent or cooperative.

Digression - Microscopic vs. Macroscopic
Examine the titration of glycine:

+H3NCH2COOH  +H3NCH2COO- + H+ k1
+H3NCH2COOH  H2NCH2COOH !+!H+ k2

+H3NCH2COO-   H2NCH2COO-!+!H+ k3
H2NCH2COOH!  H2NCH2COO- +!H+ k4

The reactions above represent microscopic equilibria (hence the lower case k).
More commonly we would measure the macroscopic equilibria:

G-H2+  G-H + H+ K1
G-H  G- + H+ K2

where
G-H2+ = +H3NCH2COOH

GH = +H3NCH2COO-  + H2NCH2COOH

G- = H2NCH2COO-

then

† 

K1 = k1 + k2     and     K2 =
1

1
k3

+ 1
k4

Ê 
Ë 

ˆ 
¯ 

    (try it!)

Note also that all four microscopic constants k1, k2, k3, and k4 are not independent.

Ligand Binding - Identical Independent Sites

In general, one can arrange i ligands on n identical sites  

† 

Wn,i =
n!

n - i( )!i!  ways

As an example, let’s consider four independent sites (n=4)

Mo = 

† 

Wn,i =
4!

4!0! =1

Mo + L  M1 M1 = 

† 

Wn,i =
4!
3!1! = 4

M1 + L  M2 M2= 

† 

Wn,i =
4!

2!2! = 6

M2 + L  M3 M3 = 

† 

Wn,i =
4!

1!3! = 4

M3 + L  M4 M4 = 

† 

Wn,i =
4!

0!4! =1
As before, we want to calculate the macroscopic parameter
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† 

v = [LB ]
[P] + [PL] =

[LB ]
[PT ]       =

[PL] + 2[PL2 ] + ...+ n[PLn ]
[P] + [PL] + [PL2] + ... + [PLn ]

more generally

† 

v =
iMi

i= 0

n

Â

Mi
i= 0

n

Â
          =

i[PLi]
i= 0

n

Â

[PLi]
i =0

n

Â

Ê 

Ë 

Á 
Á 
Á Á 

ˆ 

¯ 

˜ 
˜ 
˜ ˜ 

We have the macroscopic equilibrium constants:  

† 

Ki =
[Mi]

[Mi -1][L]
or   

† 

[Mi] = Ki[L][Mi -1]
Since these are identical sites, ki = kj, however, Ki!≠ Kj

You can show that 

† 

[Mi] = [L]i[Mo ] K j
j =1

i

’    (try it, solve for M1, then for M2, etc.)

It can be shown that 

† 

Ki =
Wn,i

Wn,i-1
k   (in above example, 

† 

Wn,i  is the number of microstates)

as an aside, in example above K1=4k, K2=(6/4)K, K3=(4/6)k, K4=(1/4)k
This says that equilibrium favors adding a ligand to a fully unbound form is more favorable than
adding ligand to a partially bound form. Does this make qualitative sense from your understanding
so far?

then 

† 

Ki =
Wn,i

Wn,i-1
k =

(n - i +1)!(i -1)!
n!

n!
(n - i)!i! k =

(n - i +1)
i k

So that 

† 

[Mi] = [L]i[Mo ] (n - j +1)
j

Ê 

Ë 
Á 

ˆ 

¯ 
˜ k

j =1

i

’

and finally 

† 

[Mi] =
(n - j +1)

j
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

j =1

i

’
È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

k[L]( )i[Mo]

which simplifies somewhat to  

† 

[Mi] =
n!

(n - i)!i!
È 

Î 
Í 

˘ 

˚ 
˙ k[L]( )i[Mo]

Returning to the macroscopic observable:

† 

v =
iMi

i= 0

n

Â

Mi
i= 0

n

Â
=

i n!
(n - i)!i!

È 

Î 
Í 

˘ 

˚ 
˙ k[L]( )i[Mo ]

Ï 
Ì 
Ó 

¸ 
˝ 
˛ i= 0

n

Â
n!

(n - i)!i!
È 

Î 
Í 

˘ 

˚ 
˙ k[L]( ) i[Mo ]

Ï 
Ì 
Ó 

¸ 
˝ 
˛ i= 0

n

Â
=

[Mo ] i n!
(n - i)!i!

È 

Î 
Í 

˘ 

˚ 
˙ k[L]( )iÏ 

Ì 
Ó 

¸ 
˝ 
˛ i =0

n

Â

[Mo ] n!
(n - i)!i!

È 

Î 
Í 

˘ 

˚ 
˙ k[L]( ) iÏ 

Ì 
Ó 

¸ 
˝ 
˛ i= 0

n

Â

  =

0 + i n!
(n - i)!i!

È 

Î 
Í 

˘ 

˚ 
˙ k[L]( ) iÏ 

Ì 
Ó 

¸ 
˝ 
˛ i =1

n

Â

1+
n!

(n - i)!i!
È 

Î 
Í 

˘ 

˚ 
˙ k[L]( ) iÏ 

Ì 
Ó 

¸ 
˝ 
˛ i=1

n

Â
However, the denominator is a binomial expansion:

† 

1 +
n!

(n - i)!i!
È 

Î 
Í 

˘ 

˚ 
˙ k[L]( )iÏ 

Ì 
Ó 

¸ 
˝ 
˛ i =1

n

Â = 1+ k[L]( )n

   eg. for n=4 above, 

† 

1 +
4!

(4 - i)!i!
È 

Î 
Í 

˘ 

˚ 
˙ k[L]( )iÏ 

Ì 
Ó 

¸ 
˝ 
˛ i =1

4

Â = 1+ 4kL + 6k2L2 + 4k3L3 + k4 L4 = 1+ k[L]( )4

save this, we’ll need it.  But in the meantime, take it and
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differentiate both sides with 

† 

∂
∂ k[L]( )

† 

i n!
(n - i)!i!

È 

Î 
Í 

˘ 

˚ 
˙ k[L]( )i -1Ï 

Ì 
Ó 

¸ 
˝ 
˛ i=1

n

Â = n 1 + k[L]( )n -1

then multiply both sides by k[L]

† 

i n!
(n - i)!i!

È 

Î 
Í 

˘ 

˚ 
˙ k[L]( )iÏ 

Ì 
Ó 

¸ 
˝ 
˛ i=1

n

Â = nk[L] 1 + k[L]( )n -1

Combining the above two results,

† 

v = nk[L] 1 + k[L]( )n -1

1+ k[L]( )n =
nk[L]

1 + k[L]

Compare:

Before for a single site:  

† 

v = Ka[L]
1+ Ka[L] , which led to 

† 

v 
[L] = Ka 1- v ( )  and 

† 

v 
1- v = [L]Ka

Before, as [L]Æ∞, 

† 

v Æ1  (single site)
Now, as [L]Æ∞, 

† 

v Æn    (n multiple sites)
Both of these results should be completely and simply obvious. At complete binding, the number of

ligands bound per protein is simply the number of ligand binding sites per protein.

Now, similarly for multiple, independent  sites we have   

† 

v 
[L] = k n - v ( )

Ligand Binding - Multiple (Different) Classes of Independent Sites
If a protein has multiple class of sites in which sites within a given class are identical and

independent, but there is more than one such class of sites, then for m different classes of sites, in
which each class is composed of ni identical sites with association constant ki:

† 

v = niki[L]
1 + ki[L]i =1

m

Â      or     

† 

v 
[L] =

niki

1+ ki[L]i=1

m

Â   (Scatchard)

Notice that if we plot 

† 

v 
[L]  vs. 

† 

v , then the intercept (

† 

v =0 at [L]=0) corresponds to 

† 

v 
[L] = niki

i=1

n

Â

Similarly, the x-intercept (

† 

v 
[L] = 0 ) corresponds to 

† 

v = n1 + n2  (extra credit for the first to derive it!).
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0.0 1.0 2.0 3.0 4.0 5.0 6.0

n1+n2y = 20 + -5x

y = 40 + -20x
K=20
n=2

K=5
n=4

n1=2,    K1=20
n2=4,   K2=5

n1k1+n2k2

n1k1

n2

tighter
binding

weaker
binding

n/L

n
Ligand Binding - Multiple Identical but Interdependent Sites

If we assume a protein (or other macromolecule) with multiple ligand binding sites, for which binding
of each ligand alters the energetics of binding of the subsequent ligand.

If the inherent (independent) binding constant is ko, and we can express the change in free energy
associated with increasing fractional binding as RTf(n),

then  

† 

DGo = DGo
o + RTfn     where    DGo

o = -RTlnk o
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and then  

† 

k(n) = e
-DG o

RT = e
- DGo

o +RTfn( )
RT = e

-DGo
o

RT e-fn = koe
-fn

Stop and analyze:
As ligand binds, if:

Dfn<0 then k>ko tighter binding cooperative
Dfn>0 then k<ko weaker bindinganticooperative

One can then replace k in the multiple independent sites model:

† 

v = nk[L]
1+ k[L] =

n[L]koe
-fn

1 + [L]koe-fn
=

n[L]ko

efn + [L]ko

† 

v 
[L] = k n - v ( ) = n - v ( )koe

-fn

The plot at right shows behavior characterized by these
kinds of interactions. (Note that our convention for k
is the inverse of that used by Cantor & Schimmel,
such that a decreasing fn corresponds to a decreasing
energy cost of association, and consequently more
ligand is bound than in the independent site model.
Conversely, an increasing fn indicates a larger
barrier to binding of second, third, and fourth
ligands, so that less is bound at any point in the
titration.

N.B. - the behavior predicted for fn increasing
(anticooperative binding) is similar in general shape to that predicted for multiple classes of
independent sites. In practice, it may be hard to distinguish the two. C & S suggests that multiple
classes of independent sites is more simple. One should always choose the most simple
model which satisfactorily explains the data.

In contrast, the cooperative behavior predicted for fn decreasing cannot be explained by a simpler
model.

Finally, one can (with great caution in real experimental situations) apply the same type of reasoning
to a system with multiple class of interacting sites, each class having a different interaction
function fn.

N.B. - It is less important that you memorize these different equations, and more
important that you understand them and can derive them. It may well be that a system
you encounter in the future requires a slight twist from these stock solutions - you want
to be able to come up with a correct, custom solution.

Ligand Binding - Infinite Cooperativity
If binding to multiple sites is infinitely cooperative, then binding is all or none and can be written

quite simply as:

† 

Mo + nL ¨ Æ æ Mn        then       Ka
n =

[Mn ]
[Mo][L]n

we can derive n as before,  

† 

n =
n[Mn ]

[Mo ] + [Mn ] =
nKa

n [Mo ][L]n

[Mo ] + Ka
n [Mo][L]n =

nKa
n [L]n

1+ Ka
n[L]n

† 

n =
n[L]n

1
Ka

n

Ê 

Ë 
Á 

ˆ 

¯ 
˜ + [L]n

    and   

† 

n =
nKa

n[L]n

1+ Ka
n[L]n    or trivially   

† 

n
[L] =

nKa
n [L]n -1

1 + Ka
n [L]n

*** MISSING EQUATION – FIX!!!  ***

bringing   

† 

1
Ka

n[L]n

Ê 

Ë Á 
ˆ 

¯ ˜ +1=
n
n

from here we can go to   

† 

n
n = q =

Ka
n[L]n

Ka
n[L]n +1      ¨  Another useful form.
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Note that 

† 

q
1- q

=
Ka

n [L]n

Ka
n [L]n +1

Ê 

Ë Á 
ˆ 

¯ ˜ 
1

1-
Ka

n[L]n

Ka
n [L]n +1

Ê 

Ë 

Á 
Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
˜ 

=
Ka

n[L]n

Ka
n [L]n +1- Ka

n [L]n = Ka
n [L]n

So that  

† 

ln q
1-q

Ê 
Ë 

ˆ 
¯ = ln Ka

n [L]n( ) = nln Ka[L]( ) = nlnKa + nln[L]

and plotting 

† 

ln q
1-q

Ê 
Ë 

ˆ 
¯    vs.   ln[L]  is predicted to yield a straight line with slope of n and an

intercept of n ln K.

You will also see this in other forms. Note that  

† 

q
1- q

=
n

n -n
  (easy, try it!)

Ligand Binding - Intermediate Cooperativity

A semiemperical derivative of this which is often used is  

† 

n
[L] =

nKa
a H [L]a H -1

1 + Ka
a H [L]a H

In this case aH is called the Hill constant and indicates the degree of cooperativity.  As aH
approaches n, then the binding is infinitely cooperative.

Other manipulations of these equations are:

† 

q =
n
n =

Ka
n[L]n

1+ Ka
n[L]n æ Æ æ 

Ka
a H [L]a H

1+ Ka
a H [L]a H

=
Ka[L]( )a H

1+ Ka[L]( )a H

The figure below plots q vs. K[L] from the above equation and demonstrates it’s behavior for infinite
cooperativity for aH!=!n!=!1,2,3,4.

0.0

0.2

0.4

0.6

0.8

1.0

0.0

y

0.5 1.0 1.5 2.0 2.5 3.0 3.5
[L]Ka

4.0

Note that n =!1 is a single site (of course, uncooperative) and shows a typical titration profile. In the
other cases, ligand binds slowly at first, but as a few bind, more bind with little (no) energetic cost.

NOTE - aH is not a constant in this treatment - see below.
Hill Plots

Also, as before we have  

† 

ln q
1-q

Ê 
Ë 

ˆ 
¯ = a H lnKa + a H ln[L]

A plot of   

† 

ln q
1-q

Ê 
Ë 

ˆ 
¯   vs. ln[L] yields a (varying) slope of aH (these are usually called Hill Plots)

For the plot above (infinite cooperativity), this manipulation would yield a straight line with
slope!=!aH!=!n. Again, for no cooperativity, the slope would be 1.0.

Now, what happens when we have intermediate cooperativity?
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(    ) =q

1-qln

ln[L]

stronger
binding

weaker
binding

  ln K strong

  ln K weak

negative
cooperativity

(    )n
n-nln

(    ) =q

1-qln

ln[L]

stronger
binding

weaker
binding

  ln K strong

  ln K weak

positive
cooperativity

(    )n

n-nln

For positive cooperativity, binding is “weak” early in the titration when no sites are occupied, and so
the sites titrate as if there is no cooperativity (in this region aH=1). Very late in the titration, as you
are filling the last remaining sites (now with a strong binding constant), you again see little
evidence of cooperativity (in this region, again aH=1).. In the middle, you see the largest evidence of
cooperativity  (aH>1).

For negative cooperativity, binding starts off at the “strong” limit, and then gets weaker as more sites
are filled.

The plots above are usually called “Hill Plots.”  Note that you will see different nomenclature for the
same plot. As before, the limiting conditions have aH=1, while in the middle of the titration  aH<1.
The Hill constant is usually defined as the slope of the curve at the midpoint of the titration. In
other words, where cooperativity (or anticooperativity) is greatest.
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Review - Ligand Binding
NOTE     : van Holde uses Ka as we do, however, Cantor & Schimmel use Kd ( = 1/Ka). Be warned.
Similarly, van Holde uses na instead of aH (as we and Cantor & Schimmel do...).
Terms:

† 

v = [LB ]
[PT ]  =

conc of ligand bound
total concentration of protein    can range from 0 to n (number of binding sites/protein)

fraction saturation 

† 

q =
v 
n =

DObs
DObsT

    can range from 0 to 1

Single Site

† 

v 
[L] =

Ka

1 + Ka [L] = -Kav + Ka Plot 

† 

v 
[L]   vs.  v , slope = -K, y-intercept = K

Plot 

† 

v 
[L]   vs.  L[ ] , y-intercept = K

Multiple Identical, Independent Sites

† 

v 
[L] =

nKa

1 + Ka [L] = -Kav + nKa Plot 

† 

v 
[L]   vs.  v , slope = -K, y-intercept = nK

Plot 

† 

v 
[L]   vs.  L[ ] , y-intercept = K

Multiple Independent Classes of Multiple Identical, Independent Sites

† 

v 
[L] =

niKai

1+ Kai
[L]i =1

nclasses

Â Plot 

† 

v 
[L]   vs.  L[ ] , y-intercept = 

† 

niKai
i=1

nclasses

Â
Multiple Identical, Infinitely Cooperative Sites

† 

v 
[L] =

nKa
n [L]n -1

1 + Ka
n [L]n

† 

q =
v 
n =

Ka
n[L]n

1+ Ka
n[L]n

then

† 

ln q
1-q

Ê 
Ë 

ˆ 
¯ = n lnKa + nln[L] Plot 

† 

ln q
1-q

Ê 
Ë 

ˆ 
¯   vs.  ln[L] , slope = n, y-intercept = nlnKa

Multiple Identical Sites, Intermediate Cooperativity

† 

v 
[L] =

nKa
a H [L]a H -1

1 + Ka
a H [L]a H

† 

q =
v 
n =

Ka
a H [L]a H

1+ Ka
a H [L]a H

then

† 

ln q
1-q

Ê 
Ë 

ˆ 
¯ = a H lnKa +a H ln[L] Plot 

† 

ln q
1-q

Ê 
Ë 

ˆ 
¯   vs.  ln[L] , slope = aH y-intercept = aHlnKa

For positive cooperativity,   1 ≤ aH ≤ n    (Fully Independent ≤!≤!Infinitely Cooperative)
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Models for Cooperativity
MWC - Monod, Wyman, Changeux

Assume that each subunit of a multisubunit protein can exist in two states:
  R (stronger ligand binding) and
  T (weaker ligand binding).

Assume that all subunits are symmetric and that they can be either all R or all T,
but not intermediate (you can argue that this should follow from the symmetry
of the system).

In the absence of ligand, an equilibrium exists:

† 

R ¨ Æ æ T         w /  equilib const  L =
T
R

Le Chatelier tells us that addition of ligand will shift the equilibrium to the left (L will decrease).
Backing up to examine the R and T states separately, each can be considered a system with n

identical sites and we can look at the microscopic equilibrium constants (kR and kT) for each.
Let’s look at a system with four sites (hemoglobin?). Using nomenclature similar to above, the

microscopic states are given by:

ro + L  r1  

r1 + L  r2  

r2 + L  r3  

r3 + L  r4  

† 

kr =
[r1]

[ro ][L] =
[r2]

[r1][L] =
[r3]

[r2][L] =
[r4 ]

[r3][L]

to + L  t1  

t1 + L  t2  

t2 + L  t3  

t3 + L  t4  

† 

kt =
[t1]

[to][L] =
[t2]

[t1][L] =
[t3]

[t2][L] =
[t4 ]

[t3 ][L]
The macroscopic equivalents are:
Ro + L  R1 !
R1 + L  R2
R2 + L  R3
R3 + L  R4

† 

KRi
=

[Ri]
[Ri -1][L] =

Wn,i

Wn,i -1
kr

To + L  T1
T1 + L  T2
T2 + L  T3
T3 + L  T4

† 

KTi
=

[Ti]
[Ti -1][L] =

Wn,i

Wn,i-1
kt

remember 

† 

Wn,i =
n!

n - i( )!i!

so 

† 

KRi
=

[Ri]
[Ri -1][L] =

Wn,i

Wn,i -1
kr =

n - i +1( )! i -1( )!
n!

n!
n - i( )!i! kr =

n - i +1( )
i kr

and 

† 

KTi
=

[Ti]
[Ti -1][L] =

n - i +1( )
i kt

so that  for the above, KR1 = 4kr,  KR2 = (3/2)kr ,  KR3 = (2/3)kr,  KR4 = (1/4)kr   etc...
Again, think about this result. Does it make sense?

and ultimately (just as before): 

† 

Ti =
n!

n - i( )!i!
È 

Î 
Í 

˘ 

˚ 
˙ kt

iLiTo   and   Ri =
n!

n - i( )!i!
È 

Î 
Í 

˘ 

˚ 
˙ kr

iLiRo

From the definition of 

† 

n , we have      

† 

n =
total L bound
total #  sites =

iRi
i=1

n

Â + iTi
i=1

n

Â

Ri
i=1

n

Â + Ti
i =1

n

Â
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† 

n =

i n!
n - i( )!i!

È 

Î 
Í 

˘ 

˚ 
˙ kr

iLiRo
i=1

n

Â + i n!
n - i( )!i!

È 

Î 
Í 

˘ 

˚ 
˙ kt

iLiTo
i =1

n

Â
n!

n - i( )!i!
È 

Î 
Í 

˘ 

˚ 
˙ kr

iLiRo
i =1

n

Â +
n!

n - i( )!i!
È 

Î 
Í 

˘ 

˚ 
˙ kt

iLiTo
i =1

n

Â
=

Ro i n!
n - i( )!i!

È 

Î 
Í 

˘ 

˚ 
˙ kr

iLi

i=1

n

Â + To i n!
n - i( )!i!

È 

Î 
Í 

˘ 

˚ 
˙ kt

iLi

i=1

n

Â

Ro
n!

n - i( )!i!
È 

Î 
Í 

˘ 

˚ 
˙ kr

iLi

i =1

n

Â + To
n!

n - i( )!i!
È 

Î 
Í 

˘ 

˚ 
˙ kt

iLi

i=1

n

Â
we know that the free forms To and Ro are related by the equilib constant L, that is To = LRT Ro.
and playing the same manipulation that we did previously relating this to 

† 

n , we have

† 

n =
nkr L 1+ kr L( )n -1

+ LRT nktL 1+ ktL( )n-1

1 + krL( )n
+ LRT 1 + ktL( )n

now by convention let the ratio of kt and kr equal c          

† 

c =
kt

kr

† 

n = nkr L
1+ kr L( )n -1

+ cLRT 1+ ckr L( )n -1

1 + krL( )n
+ LRT 1 + ckrL( )n

Rearranging this to the form for a Hill Plot, we have

† 

n 
n - n 

= kr L
1+ cLRT

1+ ckr L
1 + krL

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

n-1

1 + LRT
1 + ckrL
1+ kr L

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

n -1

As is always a good idea, let’s look at the limits:

As LÆ0

† 

n 
n - n 

æ Æ æ kr L
1+ cLRT

1+ LRT

† 

ln n 
n - n 

æ Æ æ ln L + ln kr
1 + cLRT

1+ LRT

Ê 

Ë Á 
ˆ 

¯ ˜     (Hill plot)

As LÆ∞

† 

n 
n - n 

æ Æ æ kr L
1+ cLRT

ckr

kr

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

n -1

1+ LRT
ckr

kr

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

n-1 = kr L
1 + LRTc n

1+ LRT cn -1

† 

ln n 
n - n 

æ Æ æ ln L + ln kr
1+ LRT cn

1 + LRTc n-1
Ê 

Ë Á 
ˆ 

¯ ˜    (Hill plot)

On a Hill Plot,we see that we predict a straight line with a slope of 1 for each case.
Finally, again going to limits, if T is very highly favored in the absence of ligand then

† 

As L æ Æ æ 0 and  L RT æ Æ æ • then  ln n 
n - n 

æ Æ æ lnL + ln krc( ) = ln L + ln kt

As expected, early in the titration the system behaves just like a simple T state.
If we additionally assume that c is small (kr>>kt  ligand binding is much stronger to the R state),

then

† 

As L æ Æ æ • and   c << 1  then  ln n 
n - n 

æ Æ æ lnL + ln kr

As expected, late in the titration the system behaves just like a simple R state.
KNF - Koshland, Nemethy, Filmer

Although the MWC model does explain hemoglobin and various other systems very well, the MWC
model makes the dramatic assumption that the protein can only exist all R or all T. This is most
certainly not true for all systems.

The KNF model allows for mixed states of the subunits within a single protein and so is more general.
It is also called the “sequential model” because subunit can sequentially (one at a time) convert
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from T to R and vice versa. It is also much more complicated mathematically and solutions depend
on the exact form of the intersubunit energetics.

Lattice Site Binding
We can also examine a multi-site ligand binding to a multi-

site lattice (the first examples that come to mind include
proteins or drugs binding to DNA).

As before, we can take n as the number of moles of L bound
per mole of lattice.

In this case, N is the number of monomeric binding sites,
however , N/l is the maximum number of multimeric
ligands which can bind at saturation.. However, before
any ligand has bound, there are N-l+1 potential binding sites. To understand intermediate states,
we must invoke statistical arguments as before.

† 

n = N flLk   where Nfl is the average number of free ligand sites of length l per lattice and k is the

intrinsic microscopic association constant, just as before.
Cantor & Schimmel derive (pp 878-881) the following expression

† 

n
L = N 1-

ln
N

Ê 
Ë 

ˆ 
¯ k

1-
ln
N

Ê 
Ë 

ˆ 
¯ 

1-
l -1( )n

N

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

l -1

   there is the caveat that this is strictly only true for large N

As always, let’s look at this in its limits:

For l=1 we have  

† 

n
L = N 1-

n
N

Ê 
Ë 

ˆ 
¯ k

1-
n
N

Ê 
Ë 

ˆ 
¯ 

1-
1-1( )n

N

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

1-1

= N 1-
n
N

Ê 
Ë 

ˆ 
¯ k = Nk - nk

Rearranging the general lattice equation we have 

† 

n
L = Nkg - nk gl

N        where  g =
1-

ln
N

Ê 
Ë 

ˆ 
¯ 

1-
l -1( )n

N

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

l -1

For large l and small n we have

† 

n
L = Nkg - n

k
N gl       where  k

N gl =
k
N l

1-
ln
N

Ê 
Ë 

ˆ 
¯ 

1-
l -1( )n

N

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

l -1

l æ Æ æ •æ Æ æ æ æ l k
N 1( ) l -1

æ Æ æ •

so that slope in a Scatchard plot goes to -∞, or more generally the slope gets more steep in a negative
sense.

For large l and large n (as n approaches N/l), we have

† 

n
L = Nkg - n

k
N gl       where  k

N gl =
k
N l

1-
ln
N

Ê 
Ë 

ˆ 
¯ 

1-
ln
N

Ê 
Ë 

ˆ 
¯ 

-
n
N

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

l -1

=
k
N l 0

0 -
n
N

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

l -1

æ Æ æ 0

So we see an initial steep negative slope which eventually levels out and approaches 0 as we are
saturated.

Early in the titration, binding is strongly favored. This is a result of the increase in entropy of having
ligand bound in many possible different sites. However, as the lattice becomes saturated there are
fewer and fewer sites available and now entropy pushes against binding.



Chem 728 Notes 1/30/2001 Page 12

Kinetics of Ligand Binding / Reaction Kinetics
Unimolecular reactions (C&S Chapt. 16-2)

† 

X0

k1æ Æ æ 

k-1
¨ æ æ 

X1

The rate equation is 

† 

-
dXo

dt = k1Xo - k-1X1

How might one follow such a reaction? One example is to perturb a system at equilibrium. An
example is a temperature jump experiment. At the original temperature, the system is at
equilibrium. If we “instantaneously” change the temperature to a new temperature, a new
equilibrium distribution will be defined, but the system is sitting at the old distribution.

Take 

† 

Xo  as the new equilibrium concentration of Xo. Then

Kinetics of Protein Folding
Simple Two-State Unfolding

Kinetics
NOTE     : Convention in kinetics is to use lower case k for kinetic constants and upper case K for

equilibrium constants (except for microscopic equilibrium constants).
Important: Note that the stoichiometry of a reaction does not tell you anything about
the kinetic mechanism of a reaction! This is very often overlooked.
Example:

For the reaction whose stoichiometry is: 

† 

aA + bB kæ Æ æ cC + dD
The potential kinetic mechanisms could lead to almost any velocity equation, including:

† 

V = kAa Bb
  or  

† 

V = kAB2
  or  

† 

V = kA   or  

† 

V = kB2
  or  

† 

V = k  or   ...
Remember: the upper equation simply describes the stoichiometry of the reaction.
Why is this?
Because the underlying kinetic mechanism for the overall reaction

† 

2A + 2B kæ Æ æ 2C
might be:

† 

V = kAB2

† 

A + 2B slowæ Æ æ æ X + A, fastæ Æ æ æ æ Y fastæ Æ æ 2C

† 

V = kA

† 

A slowæ Æ æ æ A* + A , fastæ Æ æ æ æ W +2B , fastæ Æ æ æ æ 2C

† 

V = kB2

† 

2B slowæ Æ æ æ V + A, fastæ Æ æ æ æ Z + A , fastæ Æ æ æ æ 2C
and many other possibilities.

Simple kinetic mechanisms
Unimolecular, one-step reactions

e.g. protein folding

† 

-
dA
dt = k1A - k-1B let 

† 

DA = A - Aeq      DB = B - Beq

then

† 

-
dDA
dt = k1 DA + Aeq( ) - k-1 DB + Beq( )

note that from the stoichiometry, you know that ∆A=-∆B

† 

-
dDA
dt = k1DA + k1Aeq + k-1DA - k-1Beq = k1 + k-1( )DA + k1Aeq - k-1Beq

At equilibrium, 

† 

k1Aeq = k-1Beq

† 

-
dDA
dt = k1 + k-1( )DA    which then leads simply to  

† 

-
dDA
DAÚ = k1 + k-1( )dtÚ

finally

† 

A
k1æ Æ æ 

k-1
¨ æ æ 

B
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† 

- ln DAt + ln DAo = ln DAo

DAt
= k1 + k-1( ) t - 0( )

DAt = DAoe
- k1 + k-1( ) t

At = Aeq + Ao - Aeq( )e- k1 + k-1( ) t

This tells us that A approaches exponentially its equilibrium value. Make sense?
A simple example of a unimolecular, one-step reaction is protein folding (see later).

Pre-equilibrium kinetics
(Leonor Michaelis and Maude Menten, 1913)

† 

E + S
k1æ Æ æ 

k-1
¨ æ æ 

ES k 2æ Æ æ E + P

The simplest kinetic formalism falls directly from our equilibrium studies. If we assume
that our reaction (k2, above) is very slow relative to both the on (k1) and off (k-1) rates
for binding of substrate to enzyme, then we can simply treat substrate binding as an
equilibrium binding (using the equations above). In other words, the first step is always
at equilibrium, unperturbed by the second step. The velocity  of the reaction under the
simplest of conditions is then  V = k2[ES], where [ES] is determined as before for ligand
binding (also remember that [ES] is proportional to 

† 

v , so that V!=!k2Ka[E][S].
Solve for the equilibrium in terms of [E]t and [S]t

† 

Ka =
[ES]

[E][S]
      [E ]t = [E ] + [ES]     [S]t = [S] + [ES]

Ka =
[ES]

[E]t - [ES]( ) [S]t - [ES]( ) =
x

Et - x( ) St - x( )
Ka Et - x( ) St - x( ) = x
This can be solved exactly very simply, but for simplicity, if we can assume substrate in excess, then:

† 

Ka Et - x( )St = x
Ka EtSt = Ka xSt + x

x = [ES] =
Ka EtSt

Ka St +1
=

EtSt

St + 1
Ka

=
EtSt

St + Kd

Finally,

† 

V = k2[ES] =
k2EtSt

St + Kd
Figuring that the reaction is fastest as StÆ∞, calculate Vmax (try it!).
This looks very similar to the equation for simple ligand binding (as we would expect):

† 

v = Ka[L]
1+ Ka[L] =

[L]
1
Ka

+ [L]
=

[L]
Kd + [L]

Steady state kinetics
(G. E. Briggs & J. B. S. Haldane, 1925)

† 

E + S
k1æ Æ æ 

k-1
¨ æ æ 

ES k 2æ Æ æ E + P

If pre-equilibrium cannot be assumed, then we can take a slightly different approach
As before, we have the equations for mass conservation:

† 

[E ]t = [E] + [ES]     [S]t = [S] + [ES]
We then assume that after the reaction has been running for some time, the rate for formation of [ES]

equals the rate of its loss - we assume that [ES] has reached steady state:



Chem 728 Notes 1/30/2001 Page 14

† 

-
d[ES]

dt
= 0 = k1[E][S] - k-1[ES]- k2[ES]

k-1 + k2( )[ES] = k1[E][S]
k1

k-1 + k2
=

1
Km

=
[ES]

[E ][S]
We can see that this is just the same equation we dealt with above, except that 1/Km substitutes for

Ka (note that the latter is simply 1/Kd).
It should be obvious that “pre-equilibrium” kinetics is simply a special case of the more general steady

state kinetics (in pre-equilibrium kinetics, k-1>>k2).
The form of the solution for these reaction equations is the same as the form of the
solution for the related binding equations. In the same way that we devised Scatchard
and other plots for binding, we can do exactly the same for kinetic analyses. They now
adopt new names.
Note that the same caveats apply as before, regarding the manipulation of raw data and
the resulting effects on error analysis.
Similarly, the same kinds of analyses can be brought in to consider multiple sites,
independent or dependent.
Finally, a reminder that the above analyses assume substrate in excess. For an
enzymatic reaction, note that substrate is depleted with time, so that what is in excess
initially may not be in excess near the end of the reaction. Also, since steady state is
assumed, the equations are not valid for the very beginning of the reaction (pre-steady
state kinetics).
Single Site Binding

† 

v 
[L] =

Ka

1 + Ka [L] = -Kav + Ka Plot 

† 

v 
[L]   vs.  v , slope = -K, y-intercept = K     (Scatchard)

Single Site Kinetics

† 

v
[S] =

1
Km

k2Et

1+ 1
Km

[L]
=

1
Km

Vmax

1 + 1
Km

[L]

v
[S]

= - 1
Km

v + Vmax
Km

Plot 

† 

v
[L]   vs.  v , slope = -1/Km, y-intercept = Vmax/Km     (Eadie-Hofstee)

Exact solutions (numerical integration) of complex rate equations
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