Chem 728 Lecture Notes - Part 3 - Thermodynamics

The following are lecture notes for Chem 728 (by C. Martin, with minor modifications by L.!Thompson). Much of the material is taken directly from the indicated references (old vH , some refs updated to new). This is not intended to replace the original references, but is made available solely for the convenience of students in the class.
VH = "Principles of Physical Biochemistry," Kensal E. van Holde, W. Curtis Johnson, \& P. Shing Ho, Prentice Hall, NJ, 1998 (ISBN 0-13-720459-0)
CS = "Biophysical Chemistry, Volumes I-III" Charles R. Cantor \& Paul R. Schimmel, W. H. Freeman, NY, 1980 (ISBN 0-7167-1188-5, 0-7167-1190-7, 0-7167-1192-3)

Review of Thermodynamics 1
Definitions 1
Thermodynamics - describes distribution of energy within (states of) a system. 1
System - any subset of the universe having spatial boundaries 1
State of a system - defined only at equilibrium 1
Energetics 1
The First Law - "Energy is conserved" 2
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{w} \quad \mathrm{dE}=\mathrm{dq}+\mathrm{dw}$ 2
For convenience, define enthalpy, $\Delta \mathrm{H}=\Delta(\mathrm{E}+\mathrm{PV})$ 2
Limiting conditions: 2
>> Review these ideas by following the reasoning of van Holde Fig 2.1 2
The Molecular View - Statistical thermodynamics 2
Equilibrium is the most probable distribution of energies 2
This equation defines the most probable (ie. equilibrium) distribution for the system 3
Second Law of Thermodynamics 3
Define entropy: $\mathrm{S}=\mathrm{k} \ln \mathrm{W}$ (an extensive property) 3
expanding our definition of entropy, 4
Define heat capacity, C_{p} 5
Re-examine "equilibrium". 5
A more relevant term for biological systems - $\Delta \mathrm{G}$ (constant T \& P) 5
Back to Boltzmann 6
Brief Aside: 8
Introduction to MathCAD 8
Error Analysis 8
L'Hopital's Rule 8
Dimensional Analysis 8
Solution thermodynamics 9
Ideal Solutions 10
For a reaction: $\quad a A+b B<-->c C+d D$ 10
van't Hoff equations 11
The Folding of Proteins and Nucleic Acids 13
Quick review - the amino acids 13
The Forces that Govern Protein Folding 13
Dipole - Point Charge Interactions. 14
van der Waals Interactions 14
Bond stretching 14
Torsional constraints - Rotations around rotatable bonds 14
The dipolar interaction significantly effects Ramachandran values for phi and psi 15
Effects of unusual amino acids on phi and psi 15
Covalent Interactions 15
"Non-bonding" Interactions. 16
Hydrogen bonding 16
Water - the unusual solvent 16
Water structure - hydrophobic interactions 16
Denaturation by urea and guanidinium hydrochloride 16
Ionic interactions 16
Disulfide bonds 16
Dominant Forces in Protein Folding? - Ken Dill Review (Biochemistry 29, 7133, 1991) 17
Cooperativity in formation of protein structures 17
Intro to hydrophobic interactions 18
Summary: Definition of Hydrophobicity 20
Analyses of Protein Folding 21
Two-State Model for Protein Folding 21
Multi-State Model for Protein Folding 21
Calorimetry 22
Differential Scanning Calorimetry 24
DNA Melting / Strand Association 25
Thermodynamics - Two non-self-complementary, complementary strands 25
Thermodynamics - Two self-complementary strands 26
Generalities 26
Breslauer et al 27

Chem 728 Lecture Notes

The following are lecture notes for Chem 728 (by C. Martin Fall 1995, with minor modifications by L. Thompson). Much of the material is taken directly from the indicated references (old vH , some refs updated to new). This is not intended to replace the original references, but is made available solely for the convenience of students in the class.

Review of Thermodynamics

See van Holde, Chapter 2
As chemists we're in terested in molecules - the microscopic view... Thermodynamics takes a macroscopic view of the behavior of large numbers of molecules (and thus it can take advantage of statistical behavior) to deduce a great deal about a reaction without needing to know its microscopic details. This understanding can then provide important insight into the molecular level. We'll see how... >>example.

Definitions

Thermodynamics - describes distribution of energy within (states of) a system. System - any subset of the universe having spatial boundaries

Transfer of matter between system and universe:
open - transfer of matter allowed closed - transfer of matter not allowed
Transfer of heat between system and universe non-adiabatic - heat allowed (eg. eppendorf tube floating in a large water bath) adiabatic - insulated, no transfer of heat (eg. (approx) eppendorf tube placed in styrofoam insulation)

State of a system - defined only at equilibrium

Specified by two of (T,P,V) plus the masses and identities of all chemical species
Properties of states of the system
Extensive - requires for their definition the full specification of the system including masses and identities of components
examples - volume, energy, entropy - double the number of molecules, double the volume
Intensive - only relative amounts of components need be known
examples - density, viscosity - double the number of molecules, no change in density
Changes between states
Reversible - path from initial to final state proceeds through a succession of "near-equilibrium" states Irreversible - NOT above
State variables - path independent
This is quite important for calculations, particularly for complex processes: a simpler path connecting the same 2 states can be used to calculate path-independent quantities (typically all but q and w).

Energetics

q-Heat \square energy supplied to the system as heat
energy transferred into or out of a system as a consequence of a temperature difference between the system and surroundings
heat absorbed by the system is positive
\mathbf{w} - Work \quad energy supplied to the system as work
any exchange of "non-heat" energy between the system and its surroundings. Examples:
volume change under constant pressure ($\mathrm{P} \Delta \mathrm{V}$)
changes in surface area under constant surface tension (2 D analog of $\mathrm{P} \Delta \mathrm{V}$) electrical work, etc.
work done on the system is positive - Beware: this convention is NOT universal! ie van Holde opposite
\mathbf{E} or \mathbf{U} - Internal Energy (extensive state function)
The energy within the system. For our purposes, only energy which can be modified by chemical processes (eg. we ignore nuclear energy).
examples - translational, vibrational, and rotational energy of the molecules, chemical bond energy, nonbonding interactions (eg. dipolar, ionic)
Typically defined relative to a standard state. Only change in E is usually considered.
H - Enthalpy (state function)
$\mathrm{H}=\mathrm{E}+\mathrm{PV}$ Enthalpy is the sum of the internal energy plus the product of the system volume times the external pressure

The First Law - "Energy is conserved"

$\mathbf{\Delta E}=\mathbf{q}+\mathbf{w} \quad \mathbf{d E}=\mathbf{d q}+\mathbf{d} \mathbf{w}$
"The change in the internal energy of a system is the total heat absorbed by the system plus the total work done on the system by its surroundings"
Note that E is a state variable, but that q and w are not (some texts note this with different symbol for dq, dw).
If only $\mathrm{P} \Delta \mathrm{V}$ work is possible then $\mathrm{dw}=-\mathrm{PdV}$
$d E=d q+d w=d q-P d V$
Note: one must apply work to the system ($\mathbf{d w}>\mathbf{0}$) in order to compress the system ($\mathbf{d V}<\mathbf{0}$)
For convenience, define enthalpy, $\Delta H=\Delta(E+P V)$
$\mathrm{dH}=\mathrm{d}(\mathrm{E}+\mathrm{PV})=\mathrm{dE}+\mathrm{PdV}+\mathrm{VdP}=\mathrm{dq}+\mathrm{dw}+\mathrm{PdV}+\mathrm{VdP}$
If only $\mathrm{P} \Delta \mathrm{V}$ work is possible then $\mathrm{dw}=-\mathrm{PdV}$
$d H=d q+V d P$

Limiting conditions:

At constant volume: $\quad \mathrm{dE}=\mathrm{dq} \quad\left(\Delta \mathrm{E}=\mathrm{q}_{\mathrm{v}}\right)$
At constant pressure: $\mathrm{dH}=\mathrm{dq} \quad\left(\Delta \mathrm{H}=\mathrm{q}_{\mathrm{p}}\right)$
Since most biological processes occur under constant pressure (1 atm), $\Delta \mathrm{H}$ is the term of choice to measure the energy of the system. However, since volume changes in most biological processes are small, $\Delta \mathrm{H} \approx \Delta \mathrm{E}$, so the distinction is minor.
>> Review these ideas by following the reasoning of van Holde Fig 2.1

The Molecular View - Statistical thermodynamics

From our point of view, a system is really just a collection of molecules. It is the individual actions and energies of the molecules that determine the properties of the system. Why then, do we often ignore the individual players? The answer is that the statistical behavior of very large numbers of well-behaved particles near equilibrium can be very accurately predicted, even though the exact behavior of any single particle cannot be predicted.

Intuitive example: consider two beakers containing a liquid and connected by a tube with a closed stopcock in between. You can readily predict what will happen when you open the stopcock. Fluid will flow (individual molecules will move from one container to the other) until the liquid levels are equal. It doesn't matter whether the fluid is water, honey, or benzene, the final state will be the same. Similarly, it doesn't matter what diameter the connecting
 tube is, or how long the connector is. Although the kinetics of approach to equilibrium may depend on these parameters, the final state will not. In contrast, you cannot predict which individual molecules will end up in which container (in fact the disposition of an individual molecule will vary with time, even at equilibrium).
Thermodynamics is really concerned with how energy is distributed over a very large number of particles. In a gas or a liquid, different particles can have different energies. These energies are statistically distributed among the particles and the sum of their individual energies is the total energy of the system.
Equilibrium is the most probable distribution of energies.
Using statistical mechanics it is possible to derive an equation known as the Boltzmann equation, which relates the relative (statistical) populations of non-degenerate states ("states" available to the particles) to their energy levels. For two such states, i and j, we have:

$$
\frac{n_{i}}{n_{j}}=e^{\frac{\left(\Phi_{i} \Pi_{j}\right)}{k_{B} T}}
$$

This equation defines the most probable (ie. equilibrium) distribution for the system.
The above assumed non-degenerate particle states. In other words, no two particle states may have the same energy. Since we are dealing with simple statistical distributions, if a given particle energy exists for two different particle states, then that energy will be more often represented in the statistical distribution than an energy represented by one state.
To include the general concept of degeneracy, the more general form of the Boltzmann equation is written:

$$
\frac{n_{i}}{n_{j}}=\frac{g_{i}}{g_{j}} e^{\square \frac{\left(\square_{i} \amalg_{j}\right)}{k_{B} T}}
$$

where each energy level, E_{i}, contains g_{i} degenerate states, and n_{i} is the number of particles with energy E_{i}.

This explains the ratio of the populations of two energy levels. To determine the population of one state relative to all possible states, we have
$\frac{n_{i}}{N}=\frac{g_{i} e^{q \frac{\left(\square_{i} \mathbb{D}_{j}\right)}{k_{B} T}}}{\square_{l} g_{i} e^{i \frac{\left(\square \Pi_{j}\right)}{k_{B} T}}}$
(N.B.: j is simply an arbitrary reference state for the calculation)

The above equation is known in statistical mechanics as the molecular partition function. Remember well the basis that thermodynamics has in statistics.

Second Law of Thermodynamics

How do we know what direction a reaction will take? A reaction will go towards the most probable state (overall distribution of energies) for the system. From statistics again, we can look at the two distributions below for three degenerate energy levels and predict which is more likely.

A:
B:
There is only one way to distribute the particles to get state A. There are a lot more ways of distributing particles to get state $B(11!/(4!4!3!)=11,550)$. If A and B have equal energies, B will occur much more often. Another way of saying this is that there is more randomness in distribution B than in distribution A. Given this, we need to have a way to express "randomness."

From probability theory, we know that the number of ways of arranging N distinguishable particles with n_{1} in one group, n_{2} in another group, etc. is
$W=\frac{N!}{n_{1}!n_{2}!n_{3}!\ldots n_{n}!}$ where $\mathrm{N}=\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\ldots+\mathrm{n}_{\mathrm{n}}$
Define entropy: $\mathrm{S}=\mathrm{k} \ln \mathrm{W}$ (an extensive property)
where k is the Boltzmann constant, k_{B} (from here forward, we will drop the subscript "B" except when it is necessary for clarity), and W is the number of ways in which the individual particle states can be distributed within a particular energy level.
Note that S is extensive, such that for a system composed of two parts, 1 and 2, the total entropy is given by:

$$
S=S_{1}+S_{2}=k \ln W_{1}+k \ln W_{2}=k \ln \left(W_{1} W_{2}\right)
$$

in other words, $\mathrm{W}=\mathrm{W}_{1} \mathrm{~W}_{2}$, which is expected from statistics: if the number of ways of distributing particles in state 1 is W_{1} and the number of ways for part 2 is W_{2}, then the number of ways of distributing particles in the combined state is simply $\mathrm{W}_{1} \mathrm{~W}_{2}$.
Similarly, we can ask about the change in entropy of a system initially characterized by a distribution W_{o} going to a distribution W_{f}
$\square S=S_{f} \square S_{o}=k \ln W_{f} \square k \ln W_{o}=k \ln \frac{\square W_{f} \square}{\square W_{o}} \square$
expanding our definition of entropy,
from $W=\frac{N!}{n_{1}!n_{2}!n_{3}!\ldots n_{n}!} \quad$ we expand $\quad \ln W=\ln (N!) \square \ln \left(n_{1}!\right) \square \ln \left(n_{2}!\right) \square \ln \left(n_{3}!\right) \ldots \square \ln \left(n_{n}!\right)$
but note that for large n (Stirling's approximation): $\ln (n!) \square n \ln (n) \square n$
$\ln W=(N \ln (N) \square N) \square\left(n_{1} \ln n_{1} \square n_{1}\right) \square\left(n_{2} \ln n_{2} \square n_{2}\right) \ldots \square\left(n_{n} \ln n_{n} \square n_{n}\right)$
$\ln W=N \ln N \square n_{1} \ln n_{1} \square n_{2} \ln n_{2} \ldots \square n_{n} \ln n_{n} \square N+n_{1}+n_{2} \ldots+n_{n}$
$\ln W=N \ln N \square n_{1} \ln n_{1} \square n_{2} \ln n_{2} \ldots \square n_{n} \ln n_{n}$
(remember that $\mathrm{N}=\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\ldots+\mathrm{n}_{\mathrm{n}}$). Finally we can summarize:
$\ln W=N \ln N \square \square_{i} \ln n_{i}$
Now let's look at a change of the system in which we redistribute some particles to different energy levels, and we'll do it in infinitesimally small steps. From before, $\mathrm{S}!=!\mathrm{k}!\ln \mathrm{W}$, so that:

$$
\begin{aligned}
& d S=k d(\ln W)=k d \square N \ln N \square \square_{i} n_{i} \ln n_{i} \square_{日} \\
& =k d(N \ln N) \square k \square_{i} d\left(n_{i} \ln n_{i}\right) \\
& =0 \square k \square_{i}\left[d\left(n_{i}\right) \ln n_{i}+n_{i} d\left(\ln n_{i}\right)\right]=\square k \square_{i}^{\square} d n_{i} \ln n_{i}+n_{i} \frac{d n_{i}}{n_{i}} \square_{\square}^{\square}=\square k \square_{i} d n_{i} \ln n_{i} \square k \square_{i} d n_{i}
\end{aligned}
$$

The summation in the last term represents the sum of all population changes in all levels. Since the N particles are restricted to the levels 1 through n (ie., particles can only redistribute among the levels), the sum of all changes is simply 0.
If this causes you trouble, imagine that if you move 5 particles from level 3 to level 6. For this transfer $\mathrm{dn}_{3}=-5$ and $\mathrm{dn}_{6}=+5$. As for this example, the sum of all transfers is simply 0 .
Therefore $d S=\square k \square_{i} \ln n_{i} d n_{i}$
remembering the Boltzmann distribution, $\frac{n_{i}}{n_{j}}=e^{\frac{\left(\square_{i} \mathbb{Q}_{j}\right)}{k_{B} T}}$
$\ln n_{i}=\ln n_{j} \square \frac{\left(\bar{i}_{i} \square \square_{j}\right)}{k_{B} T}=\ln n_{j} \square \frac{\square \square_{i}}{k T}$
Placing this into the equation for dS above
$d S=\square k \square_{i}^{\square} \frac{\square}{\square} n_{j} \square \frac{\square \square \square_{d}}{k T} n_{i}=\square k \ln n_{j} \square_{i} d n_{i}+k \square_{i} \frac{\square \square_{i}}{k T} d n_{i}$
$d S=0+k \square_{i} \frac{\square \square_{i}}{k T} d n_{i}=\frac{1}{T} \square_{i} \square \square d n_{i}$
Let's think again about the summation of $\Delta \square$: we are talking about redistributing particles between various levels. The summation totals the changes in energies, weighted by the number of particles making each change. If more particles move to higher energies than move to lower energies, the system must absorb heat (and vice versa). Hence, the summation is simply the amount of heat absorbed by the system, qrev.
$d S=\frac{1}{T} \square_{i} \square \square d n_{i}=\frac{d q_{r e v}}{T} \quad$ or $\quad \square S=\square \frac{d q_{r e v}}{T}=\frac{q_{r e v}}{T}$
In general then, we can directly calculate S for a process if we can define $q_{r e v}$ along a reversible path from state A to state B. You will remember that since S is a state function, we can exploit this result even if the actual path taken in an experiment is not reversible. A simple example using the expansion of an ideal gas is given in van Holde (pp. 80-81).
This is then expanded to include mixing two solutions. Our intuition says that the entropy of the final mixture will be greater than the sum of the entropies of the two pure components (each particle has more choices available to it).
Again intuition tells us that the melting of a crystalline solid or the unfolding of a protein (but see important discussion below) will lead to an increase in entropy.
$\square S=\frac{q_{\text {rev }}}{T}=\frac{\square H_{\text {melting }}}{T_{\text {melting }}}$
In general, heating of a sample will lead to an increase in entropy, and this can be seen from the Boltzmann analysis above. Heating a sample must lead to increased population of higher particle energy levels. This results in a larger distribution of particle energies, and therefore to increased entropy.

Define heat capacity, C_{p}

The change in the internal heat of a system as a function of temperature (and at constant pressure) can be expressed as:

$$
\frac{\square \partial q_{\text {rev }} \square}{\partial T \square_{P}}=C_{p}
$$

Remembering that $d S=\frac{d q_{\text {rev }}}{T}$

$$
d S=\frac{C_{p} d T}{T} \quad \square S=\varlimsup_{T_{1}}^{T_{2}} \frac{C_{p} d T}{T}
$$

Assuming (and this is an assumption) that the heat capacity is not temperature dependent over the temperature range from T_{1} to T_{2}, then
$\square S=C_{p} \overbrace{T_{1}}^{T_{2}} \frac{d T}{T}=C_{p} \ln \frac{\square T_{2}}{\square} \frac{\square}{T_{1}} \frac{\square}{\square}$

Re-examine "equilibrium"

From above we have $\partial q_{r e v}=T \partial S$, and returning to our definition of E we have $d E=d q_{r e v}+d w$ at constant pressure.

$$
=T d S \sqcap P d V
$$

For a reversible process at equilibrium, the internal energy E and the system volume V are constant, so that dS must be zero. If we reversibly perturb the system in an infinitesimally small manner, dS around equilibrium is zero. This means that S must be in a local maximum or local minimum.
From our previous statements about most probable states, we conclude that an isolated system (E and V constant), will be at equilibrium only when the entropy is maximum (minimum entropy would correspond to few ways of arranging the particles).
Finally state the Second Law: An isolated system will approach a state of maximum randomness - directionality.
A more relevant term for biological systems - $\Delta \mathrm{G}$ (constant $T \& P$)
We rarely encounter isolated systems at constant volume. Instead most of life's processes occur under constant temperature (eg. physiological $37^{\circ} \mathrm{C}$ or room
temperature $\approx 25^{\circ} \mathrm{C}$) and constant pressure (1!atm). We introduce the Gibbs free energy, as a function of T and P
$G=H \square T S$
$H=E+P V$
$\square d G=d H \square d(T S)=d E+V d P+P d V \square S d T \square T d S$
for a reversible process $d E=T d S \sqcap P d V$, so that
$d G_{\text {rev }}=V d P \square S d T$
If we consider equilibrium at constant temperature and pressure, then $d G=0$
Just as entropy reaches a maximum at equilibrium, G reaches a minimum.
Also note the more familiar expression at constant temperature $\Pi G=\Pi H \Pi T \Pi S$

Back to Boltzmann

Consider two energy levels, i and j,
From before we had $\frac{n_{i}}{n_{j}}=\frac{g_{i}}{g_{j}} e^{\frac{\left(D_{i} \varpi_{j}\right)}{k_{B} T}}$
But g_{i} is the degeneracy, or number of ways of attaining energy $\left[\right.$, which is W_{i}

If we move from particle energy ($\Delta \square$) to a molar energy ($\Delta \mathrm{E}$), also replacing k by R, and then approximate $\Delta \mathrm{E} \approx \Delta \mathrm{H}$, we have

You will of course notice that the left side is just the equilibrium constant for a reaction going from state j to state i . This then leads us to a familiar expression
$\frac{n_{i}}{n_{j}}=K=e^{\square \frac{\square G}{R T}} \quad$ or $\quad \ln K=\square \frac{\square G}{R T}$
Aside: The text (van Holde) first talks about the unfolding of a protein as necessarily having an associated increase in entropy, as a result of the increased motional freedom of the polypeptide and the side chains. This is what most people would come to, looking at the protein as an isolated system. At the end of the chapter, van Holde discusses the real situation - protein unfolding may actually have an unfavorable entropic component. Why? The answer is that it is unrealistic to treat an isolated protein as a system unto itself. In fact, in solution a protein is interacting substantially with the solvent (water) and components of the solvent. Indeed, it is these interactions which lead to stable folding of proteins. When we draw the line for our system, we must include these interactions.
A charged or polar group on the surface of a protein will "want to" interact with a charge or polar group in solution. Even if a direct interaction with a salt ion is formed, water will ultimately be involved in forming interactions with the polar group(s). Hence, the exposure of a charged or polar group on the surface of the protein serves to orient (restrict the motion of) water molecules - reducing their entropy. Of course, water molecules will also interact with themselves, but the interactions are transient and more varied (large entropy). Even more so, exposure of a nonpolar group to solvent forces a preferred orientation on associated solvent molecules (water) reducing the entropy of the system.

When a protein folds up, many of these interactions are satisfied internally (a polar side chain might interact with a backbone carbonyl). As before the entropy associated with each group decreases, but it was already low since the two portions of the molecule are ultimately covalently linked. Since this decrease in entropy is less than the entropy loss associated with solvent caging, the total entropy (disorder) of the system can actually be higher in the system containing a folded protein. We will discuss this concept at greater length in future lectures.

Brief Aside:

Introduction to MathCAD

When you first run MathCAD you will be placed onto an empty document.
You can simply click anywhere with the mouse to type an equation.
To define a variable, use :=
eg. a:=3.0 YVal:=a/5 (this will then convert to a more familiar form)
Note that expressions on a page are evaluated left to right and top to bottom, so that the second expression above must be located to the right of or below the left expression, otherwise " a " will be undefined.
To check the value of a variable, use =
eg. after the above, type $\mathrm{YVal}=$ the screen will respond with $\mathrm{YVal}=0.6$ Any time that the "insertion point" is in a variable, typing will do as you expect. When you want to "operate on" a variable, you often have to "back up" and select the whole variable first. To do this type either the "space bar" or the "up arrow key" while the insert point is anywhere in the name of that variable (you may have to click to get it there). You will see the single selection mark change to a rectangle surrounding the variable.
If you type "space bar" or "up arrow key" more than once, more variables will be enclosed in your rectangle for selection.
To delete a selection, you must type "Command-X" (or choose "Cut" from the edit menu). For some strange reason, the "delete key" will not delete.

Error Analysis

For an observable $f(x, y, z)$ which is a function of variables x, y, and z, each with inherent error $\Delta x, \Delta y$, and Δz, respectively

L'Hopital's Rule

What to do in the limit as a function goes to either $0 / 0$ or $\pm \infty / \pm \infty$.

Put simply:

Dimensional Analysis

When doing derivations, it is very easy to drop a term or part of a term. An easy way to find such errors is to remember that most, if not all, parameters in a function have units. Consequently, it doesn't make sense to add an expression in units of concentration to an expression in units of concentration per time. So at the end of a derivation, make sure that in any sum or difference expression, all additive terms have the same units. If they don't, then you can be certain that you made an error. To find the error, repeat the dimensional analysis on each preceding expression in your derivation.
An obvious corrollary of this is to always make sure that the final result has the correct units. If you're solving for velocity, and the expression you end up with doesn't have time in the denominator, then you are in trouble.

Solution thermodynamics

Definition: Solution - a single phase system containing more than one independently variable substance (component). At equilibrium, the solution can be described completely by specification of the components and knowledge of their interactions. Extensive and intensive variables depend on the composition.
Definition: Partial molar/specific quantities - for any extensive property X , the corresponding partial molar quantity is
$\overline{X_{i}}=\frac{\square \partial X}{\square \partial n_{i}} \|_{T, P, n_{j=i}}$
In other words, it is the differential change in the extensive property X associated with the differential change in the molar amount of species i, holding all else constant. It may very well be a function of the other parameters (T, P, the amounts and identities of other components).
Partial specific quantities are the same, but are with respect to the differential change in mass of the component.
As an example, if you add volume x of a solute to volume y of a solution, the resulting volume is not necessarily $x+y$. The volume change is governed by the partial specific volume of the solute in that solution.
Note that the observable, the total extensive quantity, is sum of the products of all partial specific quantities multiplied by the number of moles of each:
$X=\square_{i=1}^{n} n_{i} \bar{X}_{i} \quad$ or $\quad d X=\square_{i=1}^{n} \bar{X}_{i} d n_{i}$
One extensive property that deserves expansion is the free energy, \bar{G}_{i}, the partial molar free energy (also known as the chemical potential, μ_{i}.

$$
\bar{G}_{i}=\square_{i}=\frac{\square \partial G}{\square} \frac{\square}{\partial n_{i}} \square_{T, P, n_{j x i}} \quad G=\square_{i=1}^{n} n_{i} \square_{i}
$$

Just as we can look at the dependence of an extensive variable on the molar amount of a species, we can also look at its dependence on other solution parameters. In general:
from before we had: $\quad d G=\Pi S d T+V d P$
which is now more generally:

$$
d G=\square S d T+V d P+\square_{i=1}^{n} \stackrel{\square}{\square} \frac{\partial G}{\#} \frac{\square}{i} \square_{T, P, n_{j * i}} d n_{i} \stackrel{\square}{\square}=\square S d T+V d P+\square_{i=1}^{n} \square_{i} d n_{i}
$$

Since we often restrict ourselves to constant T and P , then $\quad d G=\square_{i=1}^{n} \square_{i} d n_{i}$ An important result of this can be seen, backing up to the more general $G=\square_{i=1}^{n} n_{i} \square_{i}$ we have $d G=\square_{i=1}^{n} n_{i} d \square_{i}+\square_{i=1}^{n} \square_{i} d n_{i}$
but since at constant temperature and pressure $d G=\square_{i=1}^{n} \square_{i} d n_{i}$ then $\square_{i=1}^{n} n_{i} d \square_{i}=0$
The simple result of this is that for an n-component system, μ_{i} for only n-1 components are independent (Gibbs-Duhem).

Also, the differential free energy of a solute in a system of two phases (1 and 2) at equilibrium and at constant T and P is
$d G=\square_{i=1}^{2} \square_{i} d n_{i}=\square_{1} d n_{1}+\square_{2} d n_{2}=0$
If we transfer a small amount of the solute from phase 1 to phase $2, d n_{1}=\square d n_{2}$, so that $\square \square_{1} d n_{2}+\square_{2} d n_{2}=0 \quad \square \quad \square_{1}=\square_{2}$
In other words, for a solute at equilibrium between two phases, the chemical potential for that species must be the same in both phases.
Since μ_{i} is related to concentration, c_{i}, this will lead to rules for equilibria.

Ideal Solutions

An ideal solution is one in which all components obey Raoult's law, relating vapor pressure to mole fraction, X_{i}.
Alternatively viewed, an ideal solution is one for which the enthalpy of mixing is 0 and the only source of energy change is due to changes in the entropy of mixing. It implies a lack of interactions between solutes, in exactly the same way that the ideal gas law ignores molecule-molecule interactions.
From above, we had $S=k \ln W=k \ln \frac{N_{0}!}{N_{1}!N_{2}!\ldots N_{n}!}$
Using Stirling's approximation as before,
$\square S_{\text {mixing }}=\square k \square_{i=1}^{n} N_{i} \ln \frac{N_{i}}{N_{0}}=\square k \square_{i=1}^{n} N_{i} \ln X_{i}$ where $X_{i}=\frac{N_{i}}{N_{0}}$
Therefore $\square S_{\text {mixing }}=\square R \square_{i=1}^{n} n_{i} \ln X_{i}$
$\square G_{\text {mixing }}=\square H_{\text {mixing }} \square T \square S_{\text {mixing }}=0 \square T \square S_{\text {mixing }}=R T \square_{i=1}^{n} n_{i} \ln X_{i}$
but $G=\square_{i=1}^{n} n_{i} \square_{i}$
If we define $\square G_{\text {mixing }}=G_{\text {so ln }} \square \square_{i=1}^{n} G_{i}^{\text {pure }}=\square_{i=1}^{n} n_{i} \square_{i} \square \square_{i=1}^{n} n_{i} \square_{i}^{0}=\square_{i=1}^{n} n_{i}\left(\square_{i} \square \square_{i}^{0}\right)$
Combining $\Delta \mathrm{G}_{\text {mixing }}$ from the two approaches

$$
\square G_{\text {mixing }}=\square_{i=1}^{n} n_{i}\left(\square_{i} \square \square_{i}^{0}\right)=R T \square_{i=1}^{n} n_{i} \ln X_{i}
$$

therefore
$\square_{i} \square \square_{i}^{0}=R T \ln X_{i}$
van Holde then discusses that for dilute solutions, $\mathrm{X}_{\mathrm{i}} \approx \mathrm{C}_{\mathrm{i}}$, so that for most purposes:
$\square_{i}=\square_{i}^{0}+R T \ln C_{i}$
For a reaction: $\quad \mathbf{a A}+\mathbf{b B}<-->\mathbf{c}+\mathbf{d D}$
$\square G=G_{\text {final }} \square G_{\text {initial }} \quad$ but $G=\square_{i=1}^{n} n_{i} \square_{i}$
$\square G=c \square_{C}+d \square_{D} \square a \square A \square b \square_{B}$
$\square G=\left(c \square_{C}^{o}+c R T \ln C_{C}\right)+\left(d \square_{D}^{o}+d R T \ln C_{D}\right) \square\left(a \square_{A}^{o}+a R T \ln C_{A}\right) \square\left(b \square_{B}^{0}+b R T \ln C_{B}\right)$
$\square G=\left(c \square_{C}^{o}+d \square_{D}^{o} \square a \square_{A}^{o} \square b \square_{B}^{0}\right)+\left(c R T \ln C_{C}+d R T \ln C_{D} \square a R T \ln C_{A} \square b R T \ln C_{B}\right)$
$\square G=\square G^{o}+R T \ln \frac{C_{C}^{c} C_{D}^{d}}{C_{A}^{a} C_{B}^{b}} \quad$ a classic!
At equilibrium $\Delta \mathrm{G}=0$, so
another classic!
Also $\square G^{o}=\square H^{o} \square T \square S^{o}=\square R T \ln K_{e q}$ so $\ln K_{e q}=\frac{\square \square H^{o}}{R T}+\frac{\square S^{o}}{R}$
If $\Delta \mathrm{H}^{0}$ and $\Delta \mathrm{S}^{0}$ are independent of temperature (often NOT for protein interactions, but often is OK over a narrow temperature range), then the temperature dependence of K_{eq} can yield $\Delta \mathrm{H}^{0}$ and $\Delta \mathrm{S}^{0}$.

van't Hoff equations

In calorimetry, one can directly measure heats associated with certain types of reactions.
Let's continue to look at the temperature dependence of some thermodynamic parameters.
Starting with the expression: $\ln K_{e q}=\frac{\square \square H^{o}}{R T}+\frac{\square S^{o}}{R}$
We can derive the differential expression: $\left.\frac{\left.\square \partial \ln K_{e q}\right]}{\partial(1 / T)}\right]_{p}=\frac{\square \square H^{o}}{R}$
or alternatively, $\left.\frac{\partial \ln K_{e q}}{\partial T}\right]_{P}=\frac{\square H^{o}}{R T^{2}}$
These are various forms of the van't Hoff relation.
We can also predict the temperature dependence of the equilibrium constant over a finite change in temperature:
$\ln K_{T_{i}}=\frac{\square \square G_{T_{i}}^{o}}{R T_{i}}$ leads to $\ln K_{T_{2}} \square \ln K_{T_{1}}=\frac{\square \square G_{T_{2}}^{o}}{R T_{2}} \square \frac{\square \square G_{T_{1}}^{o}}{R T_{1}}$
or $\ln K_{T_{2}}=\ln K_{T_{1}}+\frac{\square \square G_{T_{2}}^{o}}{R T_{2}} \square \frac{\square \square G_{T_{1}}^{o}}{R T_{1}}$
We can also express this in terms of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$
$\ln K_{T_{2}}=\ln K_{T_{1}}+\frac{\square\left(\square H_{T_{2}}^{o} \square T_{2} \square S_{T_{2}}^{o}\right)}{R T_{2}} \square \frac{\square\left(\square H_{T_{1}}^{o} \square T_{1} \square S_{T_{1}}^{o}\right)}{R T_{1}}$
$\ln K_{T_{2}}=\ln K_{T_{1}}+\frac{\left(\square \square H_{T_{2}}^{o}+T_{2} \square S_{T_{2}}^{o}\right)}{R T_{2}}+\frac{\left(\square H_{T_{1}}^{o} \square T_{1} \square S_{T_{1}}^{o}\right)}{R T_{1}}$
$\ln K_{T_{2}}=\ln K_{T_{1}}+\frac{\square H_{T_{1}}^{o}}{R T_{1}} \square \frac{\square H_{T_{2}}^{o}}{R T_{2}}+\frac{\square S_{T_{2}}^{o} \square \square S_{T_{1}}^{o}}{R}$
If we are trying to expand this over a temperature range which is narrow enough that we can assume $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are temperature independent, then we can simplify this to:
$\ln K_{T_{2}}=\ln K_{T_{1}}+\frac{\square H_{T}^{o}}{R} \square \frac{1}{T_{1}} \square \frac{1}{T_{2}} \square=\ln K_{T_{1}}+\frac{\square H_{T}^{o}}{R} \frac{\square T_{2} \square T_{1} \square}{T_{1} T_{2}} \frac{\square}{\square}$
If $\Delta \mathrm{H}<0$ (exothermic reaction) then increasing temperature lowers K, pushing the reaction towards reactants. This is precisely what your intuition should tell you (think Le Chatelier). The opposite is true for endothermic reactions. Alternatively, we can come up with a more general expression. Remembering our definition of Gibbs free energy: G $=\mathrm{H}-\mathrm{TS}$ then $\frac{G}{T}=\frac{H}{T} \square \mathrm{~S}$. Differentiating in Tyields
$\stackrel{\square \partial(G / T)}{\partial T} \square_{P}=\frac{1}{T} \frac{\partial \partial H}{\square} \frac{\partial T}{\partial T} \square_{P} \frac{1}{T}^{2} H \square \frac{\square \partial S}{\square \partial T} \square_{P}$

Finally, remember that at equilibrium $\left.\left.\quad \square C_{p}^{o}=\frac{\square \square H^{o}}{\partial T}\right]_{p}=T \frac{\partial \square S^{o}}{\partial T}\right]_{p}$
$\frac{2, \frac{\square G^{o}}{T}-}{\partial T}=\frac{1}{T} \square C_{p}^{o} \square \frac{\square H^{o}}{T^{2}} \square \frac{1}{T} \square C_{p}^{o}$
$\frac{\square_{\partial}\left(\square G^{o} / T\right)}{\square-\frac{\square}{\square}} \underset{\square}{\square}=\frac{\square \square H^{o}}{T^{2}}$
(Gibbs-Helmholtz equation)

The integrated form of this expression is:
$\prod_{T_{1}}^{T_{2}}(G / T)=\square_{T_{1}}^{T_{2}} \frac{H}{T^{2}} \partial T$
$\frac{\square G_{T_{2}}}{T_{2}} \square \frac{\square G_{T_{1}}}{T_{1}}=\square \square^{T_{2}} \frac{\square H_{T}}{T^{2}} \partial T$
Now, if $\Delta \mathrm{H}$ is independent of temperature, this will eventually lead to the expression above for the temperature dependence of $\ln (\mathrm{K})$ - try it!
For the unfolding of a protein, we can assume a simple "two-state" model (in other words, the protein is either completely folded or "completely" unfolded, but intermediates do not accumulate significantly). You might think that this is an unreasonable assumption, however the folding of a protein is a highly cooperative process, and one that is often poised on the edge of stability, such that quite often we can safely make this assumption.
The following represent thermodynamic data for the unfolding of ribonuclease at $30^{\circ} \mathrm{C}$.
In other words, for the reaction: $\mathrm{F}<-->\mathrm{U}$
Note the large $\Delta \mathrm{C}_{\mathrm{p}}{ }^{0}$.

pH	$\Delta \mathrm{G}^{0}$ (kcal/mole)	$\Delta \mathrm{H}^{0}$ (kcal/mole)	$T \Delta S^{0}$ (kcal/mole)	$\begin{gathered} \Delta \mathrm{S}^{\mathrm{o}} \\ \left(\text { cal } \mathrm{deg}^{-1} \mathrm{~mole}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{C}_{\mathrm{p}}{ }^{\mathrm{o}} \\ \left(\text { cal } \operatorname{deg}^{-1} \text { mole }^{-1}\right) \end{gathered}$
$\begin{array}{r} 1.1 \\ 3 \end{array}$	-1.09	60.3	61.2	202	2072
$\begin{gathered} 2.5 \\ 0 \end{gathered}$	0.91	57.2	56.3	186	1985
$\begin{array}{r} 3.1 \\ 5 \\ \hline \end{array}$	3.09	53.0	50.0	165	1987

Note the large $\Delta \mathrm{C}_{\mathrm{p}}{ }^{0}$. For comparison, heat capacities for pure liquids are:
water: $18 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mole}^{-1} \quad$ benzene: $32 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mole}^{-1}$
Note that the protein is unstable at $\mathrm{pH}=1.13$, but becomes stable at $\mathrm{pH}=2.50$. Note also that $\Delta \mathrm{H}^{0}$ and $\Delta \mathrm{S}^{0}$ are large relative to $\Delta \mathrm{G}^{0}$. The large $\Delta \mathrm{C}_{\mathrm{p}}{ }^{0}$ indicates that $\Delta \mathrm{H}^{0}$ and $\Delta \mathrm{S}^{o}$ will show a strong temperature dependence.
The following data represent thermodynamic parameters for the unfolding of a number of different proteins. Again, note the large $\Delta \mathrm{C}_{\mathrm{p}}{ }^{\circ}$.

The Folding of Proteins and Nucleic Acids

Quick review - the amino acids

Nonpolar - low solubility in water
Always: Ala, Val, Ile, Leu. Almost always: Phe, Trp, Met
Charged - high solubility in water, must interact strongly with water
Glu, Asp, Arg, Lys
Strongly Polar - need to interact with water
Asn, Gln, Ser, Thr
Ambiguous
Cys, His - pK_{a} 's near 7.0. Clearly polar when charged, fairly nonpolar when neutral
Tyr - has a H-bond donor, but is otherwise very nonpolar. Indeed it is normally found in nonpolar niches in protein structures - rarely at the surface.
Special
Gly - nonpolar. More freedom to rotate than others (wider range of phi and psi angles).
Pro - nonpolar. Less freedom to rotate than others (phi fixed, psi limited - see below).

The Forces that Govern Protein Folding

Coulombic Charge - Charge Interaction

Dipolar Interaction

$$
E_{\text {dipolar }}=\frac{1}{\square} \frac{\square_{A} \cdot \square_{B}}{r^{3}} \square \frac{3\left(\square_{A} \cdot \vec{r}\right)\left(\square_{B} \bullet \vec{r}\right)}{r^{5}} \frac{\square}{\square}
$$

where μ_{A} and μ_{B} are point dipoles (vectors) separated by a distance!r. Remember that carbonyl $\mathrm{C}=\mathrm{O}$ and amide $\mathrm{N}-\mathrm{H}$ bonds have an uneven distribution of electrons - that is, each has a dipole moment associated with it. Note from above that the dipolar interaction depends on both
 the distance and the angle between the dipoles.

Point charge approximation. One can model the dipolar interaction using a point dipole approximation as above, or alternatively, since the distance between dipoles is short, it may be better to view each dipole as two separated charges. This is shown in the lower figure at right. We can now view the interactions as simple coulombic charge-charge
 interactions, according to:

$$
E_{\text {dipolar }}=\square_{i, j} \frac{1}{\square} \frac{q_{i} q_{j}}{r_{i j}^{2}}
$$

This is a common approach in "molecular dynamics/mechanics" calculations. Each atom in the entire protein is assigned a partial charge and the coulombic interactions are summed. Again note that an important parameter in this estimation is the dielectric (\square) of the intervening medium. Values from 2-5 or a bit higher are realistic. (\square for water is $80!$). In this case, there is little between the charges and so a low dielectric is reasonable. For dipoles which are separated a greater distance in the protein, The effective dielectric of the intervening protein will be somewhat higher. However, estimates are difficult to make and the value will be different in different parts of the protein.

Dipole - Point Charge Interactions

You can readily imagine interactions between a dipole moment from one part of the protein structure and a point charge nearby (a charged amino acid for example). This intermediate case is again well approximated by the full point charge picture presented above.

van der Waals Interactions

this interaction is a result of dipolar interactions between transient induced dipole moments within atoms. Electrons in any given atom may at any point in time be non-uniformly distributed about the nucleus (although on average they are symmetrically displaced). This non-uniform distribution results in a momentary dipole. The resulting dipole can then induce a dipole in a neighboring atom, of opposite direction. This leads to an attractive force between the atoms. However, at shorter distances $\mathrm{e}^{-} \mathrm{e}^{-}$repulsion becomes greater than this attractive force, so that the atoms repel.
How important are van der Waals interactions to protein structure?
A single van der Waals interaction is only a few hundred calories, however, there are many such contacts in a single protein. So you can imagine that the energies could add up significantly. However, the folded and unfolded forms of the protein both have a large number of van der Waals contacts (the latter has many with water), so that the net stabilization of protein structure imparted by van der Waals interactions may be small.

Bond stretching

Energies are too big to worry about. In other words, the energy cost to significantly lengthening (or shortening) a covalent bond in the final (average) protein structure is so high that such considerations can be ignored. Covalent bonds are considered to be constant in length and set at classic values for the bond involved.

Torsional constraints - Rotations around rotatable bonds

Aside - Stereochemistry at the C_{\square} position

The stereochemistry at the C_{\square} position can be easily remembered by use of the little corny pneumonic "CORN." With the (little) hydrogen pointing towards you, proceeding in a clockwise direction, the other three substituents should spell out "CORN" as shown at right (another contribution from Jane Richardson).

Rotation around some bonds is also too high in energy cost. For example, the peptide bond CO-NH has partial double bond character. For our purposes, then it can be assumed that rotation of the peptide bond from the angle at which the π system is planar costs too much energy to occur with any frequency.
However, rotation around the other two bonds in the polypeptide chain does occur at low energy. Consequently, variation in these angles will contribute to differences in protein structure. (see C\&S pp!254-257 for a detailed explanation of the sign conventions).
\square ranges from -180 to 180° with 90° corresponding to a cis configuration. An all trans backbone (if it adopted the simple planar structure above) would correspond to $\bar{\square}$ and $\square!=180^{\circ}$.

For a protein \square-helix, $\square=-57^{\circ}$ and $\square!=!-47^{\circ}$ for every amino acid unit in the helix.
Ramachandran plots show that only certain ranges (and combinations of ranges) are allowed for these angles. This is a result of steric considerations of the functional groups. An important distinction is made for the amino acid glycine (Gly): Due to the very small size of its functional group (hydrogen), a much wider variety of angles is energetically reasonable. (see C\&S p.!259 for illustration). This has important implications for protein folding.
Sterics effects possible phi / psi angles
Of course, the major restriction on phi and psi angles arises due to the bulk of the groups attached to a given set of peptide bonds. Only certain ranges of angles allow low energy steric interactions.
Staggered vs. eclipsed
As we have all seen in organic chemistry classes, bonds prefer to rotate such that their attached bonds are "eclipsed." This is most simple explained in terms of sterics... Suffice it to say that this effects preferred values of phi and psi.

The dipolar interaction significantly effects Ramachandran values for phi and psi

The picture at right shows that the dipole moments associated with the peptide bond place energetic restrictions on the angles which can be adopted by phi and psi. Adjacent peptide bonds would like to interact favorably.

Effects of unusual amino acids on phi and psi

 Gly has a simple hydrogen as its "functional group" (R above). Consequently the steric restrictions are much less for Gly and it is allowed a much wider range of $\mathrm{phi} / \mathrm{psi}$ angles (see C\&S).Pro is also unusual in that the normal $\mathrm{C}_{\square}-\mathrm{N}$ bond is tied up in a 5 -membered ring. Consequently the

 phi angle is rigidly fixed near -60°. The psi angle is not rigidly fixed, but is significantly more restricted than in any other amino acid. The angles for psi which result in energy minima are -55° (compact chain) and 145° (extended chain).

 In addition, the psi angle at the amino acid $i-1$ is more restricted and constrained to different values than in other contexts (the NH "upstream" of it is now N-R). So most amino acids are very sensitive to the presence of Pro at $i+1$ (the exception is Gly, which already has a wide range of angles available to it and has little steric clash to present to the $\mathrm{N}-\mathrm{R}$ group).
f

Covalent Interactions

As for bond stretching and amide bond rotation (but much more strongly), the disruption of a covalent bond requires a very high energy cost. Thus, covalent bonds are not considered as variable.

"Non-bonding" Interactions

A variety of non-bonding interactions contribute to protein stability, and in fact, it is these interactions, together with torsion angle changes which drive the formation of secondary and tertiary structure.
London dispersion energy -

Hydrogen bonding

One way of viewing hydrogen bonding is simple electrostatics.
We could view it as a charge-charge attraction as shown at right. This is probably overly simplistic and does not include orbital overlap, which results in an angular dependence to the interaction.

Water - the unusual solvent

Compound	Melting point (K)	Boiling point!(K)
$\mathrm{H}_{2} \mathrm{O}$	273	373
$\mathrm{H}_{2} \mathrm{~S}$	190	211
$\mathrm{CH}_{3}(\mathrm{CO}) \mathrm{OH}$	290	391
$\mathrm{CH}_{3}(\mathrm{CO}) \mathrm{CH}_{3}$	178	330
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	156	351
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	83	231
$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	135	249
$\mathrm{CH}_{3} \mathrm{NH}_{2}$	181	267
$\mathrm{CH}_{3} \mathrm{CH}_{3}$	101	185

Water structure - hydrophobic interactions

C\&S Part I (pp 279-89) discuss hydrophobic interactions and water structure.
It's not as simple as they imply (see Dill below), but the concepts are interesting.
Water forms "cage-like lattices" around hydrophobic molecules
Water is indeed unique in its properties. Even in its liquid state, it adopts transient local "crystalline" structures (microscopic icebergs). Cage like lattices can form which can sequester small hydrophobic molecules. This results in enthalpic stabilization. But formation of these cage-like polyhedrons severely restricts the entropy of the water molecules - ie. entropically destabilized..
Hence there is a large entropic cost to the solvation of nonpolar molecules -- the hydrophobic effect is typically viewed as entropically driven.

Kauzman measured $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ for the transfer of a number of different molecules from nonpolar solvents to water (p .285). $\Delta \mathrm{H}$ is negative in all cases (the nonpolar molecules prefer water because the ice like structures create hydrogen bonds), but $\Delta \mathrm{S}$ is negative as well (the nonpolar molecules decrease the entropy of the system in going to water and so prefer the non polar solvent). At room temperature, $\Delta \mathrm{G}$ strongly favors transfer to the non polar solvent (entropically driven).

Denaturation by urea and guanidinium hydrochloride

Various hydrophobic or nonpolar side chains prefer 8!M urea to water. (that is $\Delta \mathrm{G}_{\text {tr!water }} \square$ gua is negative (similar arguments).

Ionic interactions

They occur in proteins. But are thought to be a minor contributor to stability (see below).
Like charges - repulsive - enthalpy unfavorable
Opposite charges - attractive - enthalpy favorable
A charge in aqueous solution requires substantial solvation. This decreases the entropy of the water. An ion pair requires much less.

Disulfide bonds

Significant entropic destabilization of the unfolded structure.
Recent studies suggest that disulfide bonds don't direct protein folding, but stabilize structures which already form. They stabilize the structure not so much by lowering the energy of the folded state, but by entropically raising the energy of the unfolded state.

Dominant Forces in Protein Folding? - Ken Dill Review (Biochemistry 29, 7133, 1991)

Electrostatic interactions
Long-range - if the net charge of a protein is non zero (ie the protein is on either side of its isoelectric point), then there will be a net repulsive interaction between unbalanced like charges. This forms the basis for the general trend that a protein most stable at its isoelectric point.
Specific charge interactions - attractive ion pairing (salt bridges, ionic bonds). Not too sensitive to bulk dielectric, since the interaction is short range - little intervening medium. Can effect unfolded state as well as folded state.
Most salt bridge interactions occur at the surface of the protein. The ion pair is not completely selfneutralizing and so requires solvation (cost to bury an ion pair is on the order of $7 \mathrm{kcal} / \mathrm{mole}$). Rarely found in the interior of proteins. Any solvent effects which stabilize / destabilize ion pairs at the surface of the protein would have similar stabilizing / destabilizing effects on the ions in the unfolded state (little net effect). In fact recent studies suggest that hydration is better in the unfolded state (ion is more accessible).
Often associated with a change in partial molal volume. Isolated charges require extensive hydration. The water packs tightly around the charge - electrostriction.
Clearly not the dominant force in protein folding - protein stability is not a steep function around the pI, nor is stability strongly dependent on salt (dielectric of the medium).
Evolutionary studies show that surface charges are not highly conserved. Mutagenesis studies have confirmed that surface charges can usually be mutated with little perturbation of stability.
Too few to be a major net structural force (1-3 kcal/mole/ion pair, ≈ 5 ion pairs $/ 150$ aa's).
Hydrogen bonding and van der Waals interactions
H-bonding: discussed previously. View it either as 1) a local charge-charge attraction (with partial charges) or 2) as a bonding interaction involving orbital overlap.
van der Waals: Like H-bonding, it is short range and will have similar effects on energetics. Hard to model and understand the way we do H-bonding.
Helix-coil transitions: Balance between entropy and enthalpy. At low temperatures enthalpy dominates and the helix is favored. At high temperatures, entropy dominates and the random coil is favored. A sharp transition occurs. In general increased net charge of the protein should disfavor helix formation and favor the more expanded random coil. Solvents which H-bond well compete for the intrahelical H-bonding and so destabilize the helix.
Similar arguments for b-sheets.
Kauzmann argued early on (and Dill agrees) that although H-bonding interactions are important to details of structure, they cannot drive protein folding.

The reason is that the H-bond interactions with water in the unfolded state are quite strong. The net change is very small and could go either way.

Cooperativity in formation of protein structures

The first H-bond in a unit of secondary structure typically costs energy due to loss of configurational entropy. But once that price is paid, subsequent H-bonds forms without the energetic expense. For this reason, helices become more stable and transitions sharpen with increasing length.
N -methyl-acetamide ($\mathrm{CH} 3(\mathrm{CO})(\mathrm{NH}) \mathrm{CH} 3)$ is a popular model to study effects on hydrogen bonding interactions (mimics the peptide backbone). At $25^{\circ} \mathrm{C}$, dimerization is disfavored. Loss of translational entropy?

Additionally, consider entropic effects in the formation of multiple H-bonds. In the pairing of a dipeptide, two bonds can form in a single dimer. When only one forms, the two molecules still maintain a rotational degree of freedom about that bond. When the second bond forms, that rotation is completely lost - entropy decreases. Difficult to separate the effects.
Dill's conclusion: H-bonding alone will not drive protein folding, but if other processes favor folding, then H-bonds will be favorable within the structure.
Statistics from known protein structures: $C=O$ groups:

89\% are H-bonded
43\% to water
11% to side chains
46% to main chain
NH groups:
88\% are H-bonded
21% to water
11% to side chains
68\% to main chain
If H -bonding were dominant, then

Solvents which are good H-bonders should destabilize protein structure, those that are bad H-bonders should have little effect. Observation: 1\% SDS can denature proteins, despite its low concentration and the fact that it does not destabilize helices.
Tetraalkylammonium salts increasing denature proteins as the length of the alkyl group increases (shouldn't effect H-bonding).
Alcohols are more hydrophobic than water and they stabilize helices, yet they denature proteins.
Mutagenesis: H-bonds effect stability, but the magnitude and direction of the effect varies significantly.
"Local" interactions - "Intrinsic" properties (note his definition of "intrinsic")
Must know the differential effect on native vs. unfolded state.
Define local interactions as those occurring between an amino acid and another amino acid 3-4 distant in the primary sequence
At $20^{\circ} \mathrm{C}$, the propensity for a sequence to form a helix is generally quite small.
Additional stability occurs if helix formation leads to burial of a nonpolar surface.
Helices are further stabilized by charge compensation at the ends.
Helices can be stabilized by salt bridges and other side chain interactions.
Bottom line: context can be at least as important as "intrinsic" properties. Early on, people took sequences which were known to form helices in proteins and were somewhat surprised to find that they did not form helices when isolated in solution. Should be no surprise now.
Helices in globular proteins are on average short (6-12 residues) - much shorter than should be stable. Conversely, the longer a helix, the more stable it should be, yet we don't see lots of long helices in solution (think about it - why?).
Context "rules" for formation of helices in proteins (note that "rules" is in quotes...)
Charges are distributed to stabilize the helix dipole moment (or the end carboxyl oxygen and amino proton).
Ends of helices are often at the surface (same reason as above)
Helices can pack in anti-aligned pairs to stabilize dipole moments (questionable importance)
Other problems with "intrinsic" properties
Cannot predict sheet structures, which are inherently non-local.
Intrinsic properties have shown a 64% average success rate in predicting structure
He goes through an analysis which says that this means local (intrinsic) factors contribute 15-30\% of the total information required to predict a structure.
Hydrophobic effect - nonpolar solvation
Nonpolar solvents denature proteins by lowering the energy of the unfolded state
Evidence:

1) Temp dependence of the free energy of folding follows that of transfer of nonpolar model compounds from water to nonpolar media
2) Crystal structures confirm sequestering of nonpolar groups
3) Dependence of stability on the nature of the salt species in solution follows the Hofmeister series, suggesting hydrophobic interactions
4) Mutagenesis and other studies suggest that stability is proportional to the oil-water partitioning of the amino acid
5) Hydrophobicity of core amino acids is evolutionarily conserved
6) Computer simulations of incorrectly folded proteins shows that poor interior/exterior distribution of hydrophobic residues is a major factor in instability.

Intro to hydrophobic interactions

Note first that mixing of simple solutions is entropically driven. Molecules want to "spread out" and obtain the highest possible translational entropy (dispersion). However repulsion between molecules counters this driving force somewhat. When two components A and B are relatively insoluble in each other (strong repulsive forces between them), an enthalpic term opposes the entropic term. With increasing temperature, the entropic term dominates and the solute is eventually allowed to mix. Or rather, solubility goes up. However, entropic terms can also oppose mixing. In water, nonpolar molecules are harbored in water "shells," the polyhedron we discussed before. The dissolution of a nonpolar molecule in the water, leads to extensive ordering of this solvation shell, and hence to a decrease in entropy of the system.

Narrow definition of hydrophobic interactions: Dill describes the hydrophobic interaction very narrowly as the transfer of a nonpolar solute to an aqueous solution only when the mixing is "opposed by an excess entropy."
"Excess entropy" is the entropy associated with transfer of a solute which is not derived from the simple (statistical) entropy of mixing.

EMBED "Equation" "Word Object1" * mergeformat
Another property of the solvation of nonpolar solutes in water is that the transfer to water is characterized by an enthalpy with a strong temperature dependence (in other words, the heat capacity for transfer is large and positive).

Remember that $\Delta H=C p \Delta T$
Now we have (assuming heat capacity independent of temperature::
EMBED "Equation" "Word Object2" *
mergeformat

EMBED "Equation" "Word Object2"
* mergeformat

Therefore, assuming that the heat capacity is independent of temperature:
$\left.\square G_{T}=\square H_{T} \square T \square S_{T}=\square H_{T_{h}}+\square C_{p}\left(T \square T_{h}\right) \square T \square S_{T_{s}} \square T \square C_{p} \ln \frac{\square T}{\square} \frac{T}{T_{s}} \right\rvert\,$

This means that $\Delta \mathrm{G}$ does not necessarily steadily decrease with temperature as would be expected for $\Delta \mathrm{G}!=!\Delta \mathrm{H}!-!\mathrm{T} \Delta \mathrm{S}$ if $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ were temperature independent. The diagram at right shows that $\Delta \mathrm{G}$ (for the unfolding of the protein) may reach a maximum at a particular temperature. Indeed, a similar plot can be drawn for the transfer of benzene to water, and benzene is least soluble in water near room temperature.
If protein folding were driven by this process, then we might expect proteins to exhibit a temperature at which the hydrophobic effect is maximal and the protein is therefore maximally stable (ie the protein would tend to unfold more readily at higher temperatures and at lower temperatures). This may be somewhat counterintuitive, but once you accept hydrophobicity as a major determinant of protein stability and the fact that the hydrophobic effect weakens at temperatures below its maximum, then you can see why some proteins are unstable at low temperatures - "cold denaturation." Of course for many proteins, the low end of stability may be below the freezing point of water and so cold denaturation
 is never observed.
This also means that the hydrophobic effect is entropy driven at lower temperatures, but enthalpy driven at higher temperatures! Why? Going back to the iceberg model for nonpolar solute solvation, at low temperatures the "cages" are well-formed and water molecules get to form lots of hydrogen bonds ($\Delta \mathrm{H}$ happy), but there are few conformations available that optimally satisfy $\Delta \mathrm{H}$, so entropy is low ($\Delta \mathrm{S}$ unhappy). At higher temperatures the opposite becomes true -- the clathrate structures break down (or rather they flex, "bending" the H-bonds), increasing entropy ($\Delta \mathrm{S}$ happy), but at the cost of lost (or weaker) H -bonds ($\Delta \mathrm{H}$ unhappy).
Bottom line: hydrophobic effects are characterized by a large heat capacity. Protein unfolding is typically characterized by a large heat capacity. Therefore protein unfolding must be accompanied (and by dominated by) the solvation (exposure) of nonpolar surfaces.
Residual enthalpy and entropy of unfolding
There is an additional positive entropy and enthalpy of unfolding, not accounted for by predictions from nonpolar solvation. From where do these arise? Residual enthalpy seems to increase with polar content - one proposal: folded protein has more H-bonding contacts. As for entropy, unfolding should result in increased entropy for the protein (bond angles - configurational entropy).
Site-directed mutagenesis studies - single amino acid substitutions
Various studies have now been done which involve the substitution of an interior amino acid in a protein by various other amino acids. If the system were simple, we could assume that the interior is represented by ethanol or a similar solvent, and that unfolding of the enzyme is a simple transfer from that solvent to water. To the extent that this is true, a plot of $\Delta \Delta \mathrm{G}$ for each mutant as a function of $\Delta \mathrm{G}_{\mathrm{tr}}$ for that amino acid should yield a slope of 1 . The non-ideality of this slope could arise from a number of factors:

1) "deformability" of the cavity in which the amino acid sits. How well does the protein adjust its local configuration to accommodate the substitution
2) specific interactions of each amino acid with the cavity, including enthalpy and entropy
3) how well does the denatured form of the protein mimic pure aqueous medium?
4) how exposed to water is the amino acid in the folded form (we assumed not at all)?

If the rest of the protein stabilizes a "cavity" into which the amino acid can fit, then the transfer of the side chain into that cavity will be less energetically costly than transferring the same side chain into the model solvent -- in the latter case, there is an energetic cost to create the cavity. Conversely, if the cavity is rigid and one tries to insert a larger amino acid by substitution, then the energetic cost would be higher than expected (slope >1). These kinds of analyses have been done on a number of proteins, with slopes ranging from 1 to 4 .

Summary: Definition of Hydrophobicity

Transfer of a nonpolar solute from non aqueous media to aqueous media when:

1) transfer is energetically strongly disfavored
and
2) transfer is associated with a large increase in heat capacity

Opposing Forces

If hydrophobicity were the only force involved, proteins would be much more stable than they are. What else is there?
Our discussion of hydrophobicity dealt with entropic effects from ordering water, but we ignored the large decrease in the entropy of the polypeptide associated with folding. We return to the entropy associated with rotation about the phi and psi bonds, and about the bonds in the amino acid side chains. He calls this "configurational" entropy. He also refers to this as "local" entropy.
Another aspect of the entropy loss in folding is what he calls "nonlocal" entropy. This has to do with the number of possible ways a polymer chain can fold onto itself. The hydrophobic driving force wants to minimize the exposure of nonpolar groups - there is only one (or maybe a few) configuration which minimizes that exposure. Consequently, on protein folding the chain folding is reduced from a very large number of possibilities down to 1 or a few.
We come back to things like disulfide linkages. These covalent linkages reduce the nonlocal entropy of the unfolded state -- there are now many fewer ways of folding the polymer chain in solution. Similarly, he argues that carbohydrates added to proteins can stabilize them by restricting the number of possible states in the unfolded form of the protein.
Internal architecture of proteins
To some extent, the internal architecture of proteins is dictated by this need to pack in the one form which will optimize burial of hydrophobic groups. But of course, we can also now see an important role for the H-bonding which is so readily observable. Which is dominant? Hard to say. Both are important. The upshot of this entire article is that although H-bonds are easy to see and to talk about, when all energies are added up, the hydrophobic effect is energetically the much larger force -- not the only force, but the more dominant one...

Analyses of Protein Folding

Two-State Model for Protein Folding

The basic model: $\quad \mathrm{N}$ <-> D

Most protein unfolding studies assume a two-state model for denaturation. The protein can exist in only two discrete states: native (N) and denatured (D).

Multi-State Model for Protein Folding

Effect of multiple states on observables - what if unfolding is NOT two-state?
Assume the following scheme for protein unfolding:

where N refers to native and D to denatured.
Given a microscopic observable for each state y_{i} then the overall macroscopic observable y is given by:
$y=f_{N} y_{N}+f_{D} y_{D}+\square_{i=1}^{n} f_{i} y_{i}$
where f_{i} is the mole fraction of proteins in state i. Then $f_{N}+f_{D}+\square_{i=1}^{n} f_{i}=1$
The observable can then be expressed as:

$$
\begin{aligned}
& y=\square \square f_{D} \square \square_{i=1}^{n} f_{i} \exists y_{N}+f_{D} y_{D}+\square_{i=1}^{n} f_{i} y_{i} \\
& y=y_{N} \square f_{D} y_{N}+f_{D} y_{D}+\square_{i=1}^{n}\left(f_{i} y_{i} \square f_{i} y_{N}\right)
\end{aligned}
$$

If we measure our observable as before, assuming a two-state unfolding process, we will calculate an apparent fractional unfolding:
$f_{\text {app }}=\frac{y \square y_{N}}{y_{D} \square y_{N}}=\frac{y_{N} \square f_{D} y_{N}+f_{D} y_{D}+\square_{i=1}^{n}\left(f_{i} y_{i} \square f_{i} y_{N}\right) \square y_{N}}{y_{D} \square y_{N}}$
$f_{\text {app }}=\frac{f_{D}\left(y_{D} \square y_{N}\right)+\square_{i=1}^{n}\left(f_{i} y_{i} \square f_{i} y_{N}\right)}{y_{D} \square y_{N}}$
$f_{\text {app }}=f_{D}+\prod_{i=1}^{n} f_{i} \frac{y_{i} \square y_{N}}{y_{D} \square y_{N}}$
$f_{\text {app }}=f_{D}+\square_{i=1}^{n} f_{i} d_{i}$ where $d_{i}=\frac{y_{i} \square y_{N}}{y_{D} \square y_{N}}$
from before, the apparent equilibrium constant for unfolding is: $K_{\text {app }}=\frac{\square D}{\square N} \square_{\text {app }}=\frac{f_{\text {app }}}{1 \square f_{\text {app }}}$
We can also talk about (but maybe not measure) the true equilibrium constant: $K_{D}=\frac{D}{N}=\frac{f_{D}}{f_{N}}$
We can also talk about each microscopic equilibrium constant: $K_{i}=\frac{I_{i}}{N}=\frac{f_{i}}{f_{N}}$
$\frac{f_{\text {app }}}{f_{N}}=\frac{f_{D}}{f_{N}}+\square_{i=1}^{n} \frac{f_{i}}{f_{N}} d_{i}=K_{D}+\square_{i=1}^{n} K_{i} d_{i}=K_{D} \square_{\square}+\square_{i=1}^{n} \frac{K_{i}}{K_{D}} d_{i} \square_{\square}$

$$
\begin{aligned}
& \frac{1 \square f_{\text {app }}}{f_{N}}=\frac{1 \square f_{D}+\square_{i=1}^{n} f_{i} d_{i} \square}{f_{N}}=\frac{1 \square f_{D}}{f_{N}} \square \prod_{i=1}^{n} \frac{f_{i}}{f_{N}} d_{i} \\
& \frac{1 \square f_{\text {app }}}{f_{N}}=\frac{f_{N}+\square_{i=1}^{n} f_{i}}{f_{N}} \square \square_{i=1}^{n} \frac{f_{i}}{f_{N}} d_{i}=1+\square_{i=1}^{n} \square \frac{f_{i}}{\boxminus f_{N}} \square \frac{f_{i}}{f_{N}} d_{i} \square=1+\square_{i=1}^{n} \square \frac{f_{i}}{f_{N}}\left(1 \square d_{i}\right) \frac{\square}{\square} \\
& \frac{1 \square f_{\text {app }}}{f_{N}}=1+\square_{i=1}^{n}\left[K_{i}\left(1 \square d_{i}\right)\right]
\end{aligned}
$$

Finally,
We have not yet said anything about how y_{i} depends on i. But let's look at two extremes, with one simple assumption.
The assumption: the observables for the intermediate states $\left(y_{i}\right)$ lie between y_{N} and y_{D}.
Case 1: intermediate states have properties similar to the denatured state
then $\mathrm{y}_{i} \approx \mathrm{yD}_{\mathrm{D}}$ and $\mathrm{d}_{i} \approx 1$
$K_{\text {app }}\left(d_{i} \square 1\right)=K_{D} \frac{1+\square_{i=1}^{n} \frac{K_{i}}{K_{D}}}{1+0}=K_{D}+\square_{i=1}^{n} K_{i}$
Case 2: intermediate states have properties similar to the native state then $\mathrm{y}_{i} \approx \mathrm{yN}$ and $\mathrm{d}_{i} \approx 0$
$K_{\text {app }}\left(d_{i} \square 0\right)=K_{D} \frac{1}{1+\square_{i=1}^{n} K_{i}}$
In any case, only when $\mathrm{K}_{i}=0$ (no intermediates), then $\mathrm{K}_{\text {app }}=\mathrm{K}_{\mathrm{D}}$.
In general, if intermediates exist, then $K_{\text {app }}$ will depend on how d_{i} depends on the intermediate states. One way to test for intermediates is to measure $K_{\text {app }}$ with different observables. If the two values of $\mathrm{K}_{\text {app }}$ are not the same, then $\mathrm{K}_{\text {app }}$ is not a true K_{D} - the process is not two state.
(Note from the extreme cases above, that the converse is not necessarily true).

Calorimetry

Similarly, we can worry about how the van't Hoff enthalpy that one has measured by the previous approaches is effected by the existence of intermediates.

Remember that

$\square H=R T^{2} \frac{\partial(\ln K)}{\partial T}$
$\square H_{\text {app }}=R T^{2} \frac{\partial}{\partial T} \prod_{\square}^{n} \frac{1+\prod_{i=1}^{n} \frac{K_{i}}{K_{D}} d_{i}}{1+\prod_{i=1}^{n}\left[K_{i}\left(1 \square d_{i}\right)\right.}$

$\square H_{\text {app }}=R T^{2} \frac{\partial \ln K_{D}}{\partial T}+R T^{2} \frac{\partial}{\partial T} \ln \square_{B}+\square_{i=1}^{n} \frac{K_{i}}{K_{D}} d_{i} \square R T^{2} \frac{\partial}{\partial T} \ln \square_{]}+\square_{i=1}^{n}\left[K_{i}\left(1 \square d_{i}\right)\right]$]
$\left.\left.\square H_{a p p}=\square H_{D}+R T^{2} \frac{1}{1+\square_{i=1}^{n} \frac{K_{i}}{K_{D}} d_{i}} \cap \frac{\partial}{\partial T} \square_{i=1}^{n} \frac{K_{i}}{K_{D}} d_{i} \square R T^{2} \frac{1}{1+\square_{i=1}^{n}\left[K_{i}\left(1 \square d_{i}\right)\right.}\right]-\frac{\partial}{\partial T} \square_{i=1}^{n}\left[K_{i}\left(1 \square d_{i}\right)\right]-\right]$
$\square H_{a p p}=\square H_{D}+R T^{2} \frac{1}{1+\prod_{i=1}^{n} \frac{K_{i}}{K_{D}} d_{i}} \prod_{\square}^{n} \frac{\square}{\square} \frac{\partial K_{i}}{\frac{\partial T}{2}} d_{i} \square \frac{\partial K_{D}}{\partial T} \frac{K_{i}}{K_{D}^{2}} d_{i} \prod_{\square}^{\square}$
Remember that: $\square H=R T^{2} \frac{\partial(\ln K)}{\partial T}=R T^{2} \frac{1}{K} \frac{\partial K}{\partial T} \quad$ so that $\quad \frac{\partial K}{\partial T}=\frac{K}{R T^{2}} \square H$
Then

$\square H_{\text {app }}=\square H_{D}+\frac{\square_{i=1}^{n}\left(\square H_{i} \square \square H_{D}\right) \frac{K_{i}}{K_{D}} d_{i} \square_{\square}^{n}}{1+\square_{i=1}^{n} \frac{K_{i}}{K_{D}} d_{i}} \frac{\square_{i=1}^{n}\left[\square H_{i} K_{i}\left(1 \square d_{i}\right)\right]}{1+\prod_{i=1}^{n}\left[K_{i}\left(1 \square d_{i}\right)\right]}$

agai
n , as expected if K_{i} are all zero (two state process), then $\Delta \mathrm{H}_{\mathrm{app}}!=!\Delta \mathrm{H}_{\mathrm{D}}$.
Again, however, if all of the d_{i} are zero but K_{i} are not, we have:

$$
\square H_{\text {app }}=\square H_{D} \frac{\square_{i=1}^{n} \frac{\square H_{i}}{\square H_{D}} K_{i}}{1+\prod_{i=1}^{n} K_{i}}
$$

And, again $\Delta \mathrm{H}_{\mathrm{app}}!\neq!\Delta \mathrm{H}_{\mathrm{D}}$.

Differential Scanning Calorimetry

The method
The plots at right show a measurement of the heat capacity of a solution of protein. The plot to the left just shows the DSC scan for a solution of constant heat capacity, with no reaction proceeding. The plot to its right shows the scan for a solution with constant solution heat capacity, but for which a reaction with non-zero heat capacity is proceeding with increasing temperature. At the beginning of the reaction, the total heat capacity of the solution rises above that for the solution with no reaction, reaching a maximum at the midpoint of the reaction, and decreasing as the reaction goes to

$\frac{\partial q}{\partial T}=\mathrm{C}_{\mathrm{p}} |$| $\substack{\text { Protein Solution } \\ \text { No denaturation } \\ \mathrm{C}_{\mathrm{p}} \mathrm{N}=\text { const }}$ |
| :---: |
| $\mathrm{T} \square$ |

 completion. This is the simplest protein unfolding DSC trace.

The traces at left show first two different solutions in which no reaction is occurring. As we discussed previously, the solution with denatured protein typically has a higher heat capacity than that with native protein. If the unfolding reaction had zero $\Delta \mathrm{H}$ associated with it, we could simply use the change in heat capacity of the solution as a function of the percent unfolded to monitor unfolding in the same way that we used CD spectra or other techniques to monitor unfolding. An observable changes with protein unfolding.

This is shown in the panel at right. Note that we can express the curve as follows:

$$
\frac{\square q}{\square T}(\text { measured })=\left(\square_{D} C_{p}^{D}+\square_{N} C_{p}^{N}\right)[\text { protein }]
$$

Note that the curve at right is not typical. As the reaction proceeds, as we have seen, we must include the heat of
 the reaction.

The panel at left shows the addition of $\Delta \mathrm{H}^{\circ}$ for the reaction.

$$
\left.\frac{\square q}{\square T}(\text { measured })=\frac{\square_{D}}{\square} C_{p}^{D}+\square_{N} C_{p}^{N}+\square \square \frac{\square H}{\square T} \square \text { [protein }\right]
$$

Derive an expression for total measured heat capacity as a function of the extent of the reaction (which is a function of temperature).

Assume heat capacity independent of temperature!!
Assume that the heat capacity of a mixture of native and denatured protein is simply the mole fraction weighted average of the two heat capacities.
Begin with the following parameters:
$C_{p}^{D}=$ molar heat capacity of a solution of denatured protein
$C_{p}^{N}=$ molar heat capacity of a solution of native protein
We also have given:

$$
\begin{aligned}
& \square H_{T_{o}}^{o}=\text { molar enthalpy for unfolding of the protein at } \mathrm{T}=\mathrm{T}_{\mathrm{o}} \\
& \square S_{T_{o}}^{o}=\text { molar entropy for unfolding of the protein at } \mathrm{T}=\mathrm{T}_{\mathrm{o}}
\end{aligned}
$$

The total heat capacity for the solution is:
$\frac{\square q}{\square T}$ (measured)
$=$ (heat from heat capacity of denatured protein solution)
+(heat from heat capacity of native protein solution)
+(heat from that fraction of protein which denatured during $\square \mathrm{T}$)

$$
\frac{\square q}{\square T}(\text { measured })=\stackrel{\square_{\square}}{\square} C_{p}^{D}+\square_{N} C_{p}^{N}+\square \square \frac{\square H}{\square T} \square_{[}^{[\text {protein }]}
$$

where we now remember that the enthalpy $(\Delta \mathrm{H})$ is temperature dependent.
First, let's determine the temperature dependence of $\Delta \mathrm{H}, \Delta \mathrm{S}, \Delta \mathrm{G}, \mathrm{K}_{\mathrm{D}}$, and f :
We know that:

$$
\partial \square H=\square C_{p} \partial T \quad \partial \ln K=\frac{\square \square H_{(T)}}{R} \partial \frac{\square}{\square} \square
$$

integrating from one temperature to another:

$$
\square \square^{T_{2}} \partial \square H=\square^{T_{2}} \square C_{p} \partial T \quad \square \mathrm{H}_{\mathrm{T}_{2}} \square \square \mathrm{H}_{\mathrm{T}_{1}}=\square C_{p}\left(T_{2} \square T_{1}\right) \quad \square \mathrm{H}_{\mathrm{T}}=\square \mathrm{H}_{\mathrm{T}_{\mathrm{o}}}+\square C_{p}\left(T \square T_{o}\right)
$$

Similarly,

$$
\square \square \square S=\square_{\square}^{T_{2}} \square C_{p} \frac{\partial T}{T} \quad \square \mathrm{~S}_{\mathrm{T}_{2}} \square \square \mathrm{~S}_{\mathrm{T}_{1}}=\square C_{p} \ln \frac{T_{2}}{T_{1}} \quad \square \mathrm{~S}_{\mathrm{T}}=\square \mathrm{S}_{\mathrm{T}_{o}}+\square C_{p} \ln \frac{T}{T_{o}}
$$

and

$$
\begin{aligned}
& \square G_{T}=\square H_{T} \square T \square S_{T} \\
& \square G_{T}=\left[\square H_{T_{o}}+\square C_{p}\left(T \square T_{o}\right)\right] \square T \square S_{T_{o}}+\square C_{p} \ln \frac{T}{T_{o}} \square
\end{aligned}
$$

We can get the equilibrium constant, K from $K=e^{\square \square / R T}$
So, we have the extent of the reaction given by f (mole fraction protein unfolded), which can be derived as:

$$
K=\frac{[\text { unfolded }]}{[\text { folded }]}=\frac{\square}{1 \square \square} \quad \text { so that } \quad \square=\frac{K}{1+K}
$$

Finally,

$$
\begin{aligned}
& \frac{\square q}{\square T}(\text { measured })=\square C_{p}^{D}+(1 \square \square) C_{p}^{N}+\square \square \frac{\square H}{\square T}[\text { protein }] \\
& \left.=\frac{\square}{\square} C_{p}^{D}+C_{p}^{N} \square \square C_{p}^{N}+\square \square \frac{\square H}{\square T} \square \text { protein }\right] \\
& =\square\left(C_{p}^{D} \square C_{p}^{N}\right)+C_{p}^{N}+\square \frac{\square H}{\square T}[\text { protein }] \\
& \left.=\frac{\square}{\square} C_{p}+C_{p}^{N}+\square \square \frac{\square H}{\square T} \square \text { protein }\right]
\end{aligned}
$$

DNA Melting / Strand Association

DNA duplex formation/melting is particularly amenable to simple thermodynamics.
$\Delta \mathrm{C}_{\mathrm{p}}=0$ for this process. Hence not only are basic assumptions held up, but $\Delta \mathrm{H}^{0}$ and $\Delta \mathrm{S}^{0}$ are temperature independent.
Strand association appears to be dominated by "nucleation." It can usually be treated as a simple two-state process. Again, assumptions are valid.
Thermodynamics - Two non-self-complementary, complementary strands
$S_{1}+S_{2}$ 回口 $D \quad K=\frac{D}{S_{1} S_{2}}$
Assume that when fully melted, $\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{S}_{\mathrm{o}}$.

At any temperature, the fraction associated can be represented as \square.
$D=\square S_{o} \quad S_{1}=S_{2}=(1 \square \square) S_{o}$
$K=\frac{\square S_{o}}{(1 \square \square)^{2} S_{o}^{2}}=\frac{\square}{(1 \square \square)^{2}} \frac{1}{S_{o}}$
Remembering $\square H_{v H}=R T^{2} \frac{\partial \ln K}{\partial T}$

$$
\begin{aligned}
& \square H_{v H}=R T^{2} \frac{\partial}{\partial T}\left[\ln \square \square 2 \ln (1 \square \square) \square \ln S_{o}\right] \\
& \square H_{v H}=R T^{2} \frac{1}{\square \square}+\frac{2}{1 \square \square} \frac{\square \square}{\partial T}=R T^{2} \frac{\square \square \square+2 \square \square \frac{\partial \square}{\square(1 \square \square)} \frac{\partial}{\partial T}=R T^{2} \frac{\square}{\square \square(1 \square \square)} \frac{\square}{\square \square}}{\frac{\square}{\partial T}}
\end{aligned}
$$

At the $T_{\mathrm{m}}, \square=1 / 2$, such that

Plot \square vs. $1 / \mathrm{T}$ and plot according to the above equation. This yields $\Delta \mathrm{H}_{\mathrm{vH}}$.

Thermodynamics - Two self-complementary strands

as above, but now $\mathrm{S}_{0}=$ total conc of ss DNA

$$
\begin{aligned}
& S_{1}+S_{2}=S_{o} \quad \mathrm{~S}_{1}=S_{2}=\frac{1}{2}(1 \square \square) \mathrm{S}_{\mathrm{o}} \quad D=\frac{1}{2} \square S_{o} \\
& K=\frac{\frac{1}{2} \square S_{o}}{\frac{1 \square^{2}}{\square}(1 \square \square)^{2} S_{o}^{2}}=\frac{\square}{(1 \square \square)^{2}} \frac{1}{2 S_{o}}
\end{aligned}
$$

as before

$$
\begin{aligned}
& \square H_{v H}=R T^{2} \frac{\partial}{\partial T}\left[\ln \square \square 2 \ln (1 \square \square) \square \ln S_{o} \square \ln 2\right] \\
& \square H_{v H}=R T^{2} \frac{\square}{\square \square}+\frac{2}{1 \square \square} \frac{\square \partial}{\partial T}=R T^{2} \frac{\square \square \square+2 \square \square \frac{\partial \square}{\square \square(1 \square \square)}}{\square} \frac{\partial T}{\partial T}=R T^{2} \frac{\square 1+\square}{\square \square(1 \square \square)} \frac{\square \partial \square}{\partial T}
\end{aligned}
$$

Exactly as before.

Generalities

Given that $\Delta \mathrm{C}_{\mathrm{p}}=0$, we can very simply extrapolate from a set of data
The temperature dependence of the equilibrium constant is given by: $\ln K=\frac{\square \square H^{\circ} \square}{R} \square \frac{1}{T} \square \frac{1}{T_{m}} ⿴ 囗$ And from this we can readily get to $\Delta \mathrm{G}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$.

Breslauer et al.

From Breslauer et al., Proc. Natl. Acad. Sci. U.S.A. 83, 3746-3750 (1986).
All data for DNA in $1 \mathrm{M} \mathrm{NaCl}, \mathrm{pH} 7,25^{\circ} \mathrm{C}$

Dinucleotide Step	$\Delta \mathrm{H}^{\circ}$	$\Delta \mathrm{S}^{\circ}$	$\Delta \mathrm{G}^{\circ}$	
AA/TT	$\mathrm{TT} / \mathrm{AA}$	9.1	24.0	1.9
AT/TA	-	8.6	23.9	1.5
TA/AT	-	6.0	16.9	0.9
CA/GT	TG/AC	5.8	12.9	1.9
GT/CA	AC/TG	6.5	17.3	1.3
CT/GA	AG/TC	7.8	20.8	1.6
GA/CT	TC/AG	5.6	13.5	1.6
CG/GC	-	11.9	27.8	3.6
GC/CG	-	11.1	26.7	3.1
GG/CC	$\mathrm{CC} / \mathrm{GG}$	11.0	26.6	3.1
$\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{G}^{\circ}$ in $\mathrm{kcal} / \mathrm{mole} ; \Delta \mathrm{S}^{\circ}$ in $\mathrm{cal} / \mathrm{K} / \mathrm{mole}$				

For non-self-complementary, but complementary duplexes: $\Delta \mathrm{H}_{\text {total }}=\approx 0+\square \Delta \mathrm{h}_{\mathrm{x}}$
For non-self-complementary, but complementary duplexes: $\Delta \mathrm{Gtotal}=-6 \mathrm{kcal} / \mathrm{mole}^{*}+\square \Delta \mathrm{g}_{\mathrm{x}}$
*The free energy of duplex nucleation is estimated at $-6 \mathrm{kcal} / \mathrm{mole}$ for non-self-complementary duplexes and $-5 \mathrm{kcal} /$ mole for self-complementary duplexes. Empirically determined?

Example: Duplex: CACTATA

$$
\begin{aligned}
& \Delta \mathrm{H}_{\text {total }}=0+5.8+6.5+7.8+6.0+8.6+6.0=40.7 \mathrm{kcal} / \mathrm{mole} \\
& \Delta \mathrm{G}_{\text {total }}=-6+1.9+1.3+1.6+0.9+1.5+0.9=2.1 \mathrm{kcal} / \mathrm{mole}
\end{aligned}
$$

By this accounting, $\Delta \mathrm{S}^{\circ}$ should be $\left(\Delta \mathrm{H}^{\circ}-\Delta \mathrm{G}^{\circ}\right) /(298 \mathrm{~K})=129.5 \mathrm{cal} / \mathrm{K} / \mathrm{mole}$
$\Delta \Delta \mathrm{s}_{\mathrm{x}}=\Delta \mathrm{s}_{\text {init }}+12.9+17.3+20.8+16.9+23.9+16.9=\Delta \mathrm{sinit}^{2}+35.1 \mathrm{cal} / \mathrm{K} / \mathrm{mole}$
Therefore Δ sinit $=94.4 \mathrm{cal} / \mathrm{K} / \mathrm{mole}$
Also, this predicts: $\mathrm{T}_{\mathrm{m}}=\Delta \mathrm{H} / \Delta \mathrm{S}=314 \mathrm{~K}\left(41^{\circ} \mathrm{C}\right)$
Can we use this to predict a T_{m} ?
For equal concentrations of self-complementary strands:

$$
S_{1}+S_{2}=S_{o} \quad S_{1}=S_{2}=\frac{1}{2}(1 \square \square) S_{o} \quad D=\frac{1}{2} \square S_{o} \quad K=\frac{\square}{(1 \square \square)^{2}} \frac{1}{2 S_{o}}
$$

At the midpoint of the melting transition, $\square=1 / 2 \quad K_{T_{m}}=\frac{1 / 2}{(1 \square 1 / 2)^{2}} \frac{1}{2 S_{o}}=\frac{1}{S_{o}}$

$$
\square R T_{m} \ln K_{T_{m}}=\square R T_{m} \ln \square \frac{1 \square}{\square S_{o}} ⿴=\square H \square T_{m} \square S \quad T_{m}=\frac{\square H}{\square S \square R \ln \square \frac{\square}{\square S_{o}} \square}
$$

For equal concentrations of non-self-complementary, but complementary strands:

$$
D=\square S_{o} \quad S_{1}=S_{2}=(1 \square \square) S_{o} \quad K=\frac{\square S_{o}}{(1 \square \square)^{2} S_{o}^{2}}=\frac{\square}{(1 \square \square)^{2}} \frac{1}{S_{o}}
$$

At the midpoint of the melting transition, $\square=1 / 2$

$$
K_{T_{m}}=\frac{1 / 2}{(1 \square 1 / 2)^{2}} \frac{1}{S_{o}}=\frac{2}{S_{o}}
$$

$$
\text { Assume }\left[\mathrm{S}_{0}\right]=20 \mathrm{nM} \text {, then } T_{m}=\frac{40700 \mathrm{cal} / \mathrm{mol}}{(129.5 \mathrm{cal} / \mathrm{K} / \mathrm{mol}) \square(1.987 \mathrm{cal} / \mathrm{K} / \mathrm{mol}) \ln \frac{2}{\square} \frac{2}{\square 0^{\square 8}} \square}
$$

However, remember our error analysis (This needs to be corrected slightly - see above):

$$
\begin{aligned}
& T_{m}=\frac{\square H}{\square S}=\frac{T \square H}{\square H \square \square G} \\
& \square T_{m}^{2}=\left|\frac{T}{\square H \square \square G} \square \frac{T \square H}{(\square H \square \square G)^{2}}\right|^{2} \square \square H^{2}+\left|\frac{\square T \square H}{(\square H \square \square G)^{2}}\right|^{2} \square \square G^{2} \\
& \square T_{m}^{2}=\left|\frac{\square T \square G}{(\square H \square \square G)^{2}}\right|^{2} \square \square H^{2}+\left|\frac{\square T \square H}{(\square H \square \square G)^{2}}\right|^{2} \square \square G^{2}
\end{aligned}
$$

where $\Delta \Delta \mathrm{H}$ and $\Delta \Delta \mathrm{G}$ refer to the errors in our estimations of $\Delta \mathrm{H}$ and $\Delta \mathrm{G}$, respectively. Assume that they are: $\Delta \Delta \mathrm{H}=2 \mathrm{kcal} / \mathrm{mole}, \Delta \Delta \mathrm{G}=1 \mathrm{kcal} / \mathrm{mole}$

Then

$$
\square T_{m}=\left|\frac{\square(298) 2.1}{(38.6)^{2}}\right| 2+\left|\frac{\square(298) 40.7}{(38.6)^{2}}\right| 1=0.84+8.1=9.0 K
$$

$$
\begin{aligned}
& \square R T_{m} \ln K_{T_{m}}=\square R T_{m} \ln \frac{\square}{\square} \frac{2}{S_{o}} \square=\square H \square T_{m} \square S \quad T_{m}=\frac{\square H}{\square S \square R \ln \square \frac{2}{\square S_{o}} \frac{\square}{\square}} \\
& T_{m}=\frac{\square H}{\square S \square R \ln \frac{\square}{\square S_{o}} \frac{2 \square}{\square}}=\frac{40700 \mathrm{cal} / \mathrm{mol}}{(129.5 \mathrm{cal} / \mathrm{K} / \mathrm{mol}) \square(1.987 \mathrm{cal} / \mathrm{K} / \mathrm{mol}) \ln \square \frac{2 \square}{S_{o}} \frac{2}{\square}}
\end{aligned}
$$

