Exam!#3 Chem 728 Spring 200	3 Name: Answer Key
-----------------------------	---------------------------

** This examination is open book, <u>but is to be worked on *independently*</u>. You may not discuss or otherwise communicate *any* aspect of the exam with *anyone* other than C. Martin. This includes any discussions with anyone after you are done with the exam, but before the exam's due date and time. This is *very important*.

Due in class, 9:30am, Thursday, May 1

Show your work for full credit. Be concise, but complete. Avoid long rambling answers which indicate that you don't really understand the question.

1. (30 points) Consider a protein with the following thermodynamic parameters:

 $\Delta H_{298} = -57 \text{ kcal mol}^{-1}$ $\Delta S_{298} = -187 \text{ cal mol}^{-1} \text{ K}^{-1}$ $\Delta Cp = -2.7 \text{ kcal mol}^{-1}$

You introduce a small mutation that weakens the enthalpic stability of the protein by only 1.0!kcal mol⁻¹ (less than 2%) at 298K, but has no effect on ΔS_{298} or on ΔCp). Calculate the effect of this mutation on the stability of the protein, *specifically*, what are the changes in ΔG at 25°C and on the midpoint of the temperature unfolding curve (T_m)?

You may want to "solve" the T_m part graphically (or not)... Note that T_m is the temperature at which you have equal parts folded and unfolded in solution.

ΔG_{298} (native) =	-1.274	kcal/mol	T_{m} (native) =	33.7	°C
ΔG_{298} (mutant) =	-0.274	kcal/mol	T_{m} (mutant) =	29.4	°C

Note that in determining Tm, many of you tried the approach that at the melting temperature $\Delta H=T\Delta S$. This is correct. However, you cannot simply plug in the values for ΔH and ΔS from above, as those numbers are only valid at 298 K. This is a key concept. You could either solve this graphically, plotting the full temperature-dependent ΔH and T ΔS (or ΔG), as many of you did, or you might have tried an iterative approach: first calculate it assuming that ΔH and ΔS are constant, then reevaluate ΔH and ΔS at the new temperature and recalculate Tm. In this way, you would converge on the real value (actually no one tried it that way).

$$\Delta G_{T} = \Delta H_{T_{h}} - T\Delta S_{T_{s}} + \Delta C_{p} \left(T - T_{h} - T \ln \left(\frac{T}{T_{s}} \right) \right)$$

$$\Delta G_{298}^{native} = (-57000) - 298(-187) + (-2700) \left(298 - 298 - 298 \ln \left(\frac{298}{298} \right) \right)$$

$$\Delta G_{298}^{native} = (-57000) - 298(-187) + 0$$

$$\Delta G_{298}^{native} = -57000 + 55726 = -1.274 \, kcal \, / \, mol$$

$$\Delta G_{298}^{mutant} = -56000 + 55726 = -0.274 \, kcal \, / \, mol$$

Noting that at the Tm, $\Delta G=0$

$$\Delta G_{T_m} = 0 = \Delta H_o - T_m \Delta S_o + \Delta C_p \left(T_m - T_o - T_m \ln \left(\frac{T_m}{T_o} \right) \right)$$

Exam!#3 Chem 728 Spring 2003 Name: Answer Key

There are ways in MathCAD to solve this numerically, but let's do it graphically:

 $\Delta H(\Delta HTo, \Delta Cp, To, T) := \Delta HTo + \Delta Cp \cdot (T - To) \qquad \Delta S(\Delta STo, \Delta Cp, To, T) := \Delta STo + \Delta Cp \cdot \ln\left(\frac{1}{To}\right)$ $\Delta G(\Delta HTo, \Delta STo, \Delta Cp, To, T) := \Delta H(\Delta HTo, \Delta Cp, To, T) - T \cdot \Delta S(\Delta STo, \Delta Cp, To, T)$

 $\Delta 0(\Delta 1110, \Delta 510, \Delta Cp, 10, 1) = \Delta 1(\Delta 1110, \Delta Cp, 10, 1) = 1 \Delta 5(\Delta 510, \Delta Cp, 10, 1)$

Use graphical analysis to estimate solution:

T := 273, 273.5..333 Tc(TK) := TK - 273 H := -57.0 S := -0.185 Cp := -2.0 To := 298.0

Answer Key

2. (40 points) In the following progression of simulated DSC traces of protein thermal denaturation, parameters (from $C_p^D, C_p^N, \Delta H^o, \Delta S^o$) were changed from one spectrum to the next. Discuss what you know qualitatively about each of the parameters below. In particular, compare parameters from the various traces – how is one parameter different in one DSC trace from that same parameter in the preceding trace? Bigger, smaller, zero, positive, negative, etc?

CpD=3.0, CpN=3.0, γ D=0.0, γ D=0.0, Δ H=65, $\Delta S=0.185, To=303$

Still independent of T. $\Delta Cp = 0$.

ΔH^{o}

Now clearly smaller than before (area under curve is smaller). Still positive.

ΔS^{o}

Tm hasn't changed, so since ΔH smaller, ΔS must also be smaller.

ΔH^{o}

Clearly larger than immediately above.

ΔS^{o}

Since Tm is shifted to higher T, ΔS has not increased in the same proportion that ΔH has increased.

3. (30 points) The following equation shows the temperature dependency of ΔG for a reaction, assuming zero change in heat capacity.

$$\Delta G(T) = \Delta H - T \Delta S$$

We derived in class the following:

$$\Delta G_{T_2} = \Delta H_{T_2} - T\Delta S_{T_2}$$

$$\Delta G_{T_2} = \left[\Delta H_{T_1} + \Delta C_p (T_2 - T_1)\right] - T_2 \left(\Delta S_{T_1} + \Delta C_p \ln \frac{T_2}{T_1}\right)$$

$$\Delta G_{T_2} = \Delta H_{T_1} - T_2 \Delta S_{T_1} + \Delta C_p (T_2 - T_1) - T_2 \Delta C_p \ln \frac{T_2}{T_1}$$

a) Another way of thinking about the temperature dependence of ΔG is to calculate $\Delta \Delta G = \Delta G_{T2}$ - ΔG_{T1} . Use the above to derive $\Delta \Delta G$ in terms of ΔG_{T1} , ΔCp and ΔS_{T1} , T1 and T2.

$$\begin{split} \Delta G_{T_2} &= \Delta H_{T_1} - T_2 \Delta S_{T_1} + \Delta C_p (T_2 - T_1) - T_2 \Delta C_p \ln \frac{T_2}{T_1} \\ \Delta G_{T_2} &= \Delta H_{T_1} - T_2 \Delta S_{T_1} + T_1 \Delta S_{T_1} - T_1 \Delta S_{T_1} + \Delta C_p (T_2 - T_1) - T_2 \Delta C_p \ln \frac{T_2}{T_1} \\ \Delta G_{T_2} &= \Delta H_{T_1} - T_1 \Delta S_{T_1} - T_2 \Delta S_{T_1} + T_1 \Delta S_{T_1} + \Delta C_p (T_2 - T_1) - T_2 \Delta C_p \ln \frac{T_2}{T_1} \\ \Delta G_{T_2} &= \Delta G_{T_1} - (T_2 - T_1) \Delta S_{T_1} + \Delta C_p (T_2 - T_1) - T_2 \Delta C_p \ln \frac{T_2}{T_1} \\ \Delta G_{T_2} &= \Delta G_{T_1} + (\Delta C_p - \Delta S_{T_1}) (T_2 - T_1) - T_2 \Delta C_p \ln \frac{T_2}{T_1} \\ \Delta \Delta G &= \Delta G_{T_2} - \Delta G_{T_1} = (\Delta C_p - \Delta S_{T_1}) (T_2 - T_1) - T_2 \Delta C_p \ln \frac{T_2}{T_1} \end{split}$$

b) The current version of the online lecture notes reflect thinking of the past decade that melting of duplex DNA has a "near-zero" change in heat capacity and therefore ΔH and ΔS can be considered to be independent of temperature. More recently, Bloomfield et al, presented arguments to the contrary. Specifically, for a particular oligonucleotide at its melting temperature (72°C), the following parameters were determined:

$$\Delta C_p = 65.3 \frac{cal}{mol \ K} \qquad \Delta S = 24.9 \frac{cal}{mol \ K}$$

Use the equation you derived in (a) to argue that this value of ΔCp is "not negligible." How far off is it?

In a typical use of this approach, we would measure the thermodynamics near the melting temperature for the duplex, 72°C. We might want to then take those parameters and calculate back to the thermodynamics of DNA melting at room temperature (T=25°C). Let's calculate $\Delta\Delta G$. (T₁=345K, T₂=298K) we have.

Name: Answer Key

$$\Delta\Delta G = \left(\Delta C_{p} - \Delta S_{T_{1}}\right)\left(T_{2} - T_{1}\right) - T_{2}\Delta C_{p}\ln\frac{T_{2}}{T_{1}}$$

$$\Delta\Delta G = \left(65.3 - 24.9\right)\left(\frac{cal}{mol\ K}\right)\left(T_{2} - T_{1}\right) - T_{2}\left(65.3\frac{cal}{mol\ K}\right)\ln\frac{T_{2}}{T_{1}}$$

$$\Delta\Delta G = \left(40.4\frac{cal}{mol\ K}\right)\left(T_{2} - T_{1}\right) - T_{2}\left(65.3\frac{cal}{mol\ K}\right)\ln\frac{T_{2}}{T_{1}}$$

$$\Delta\Delta G = \left(40.4\frac{cal}{mol\ K}\right)\left(298K - 345K\right) - \left(298K\right)\left(65.3\frac{cal}{mol\ K}\right)\ln\frac{298K}{345K}$$

$$\Delta\Delta G = \left(40.4\frac{cal}{mol\ K}\right)\left(-47K\right) - \left(-43.6K\right)\left(65.3\frac{cal}{mol\ K}\right)$$

$$\Delta\Delta G = \left(-1899\frac{cal}{mol}\right) + \left(2850\frac{cal}{mol}\right) = 951\frac{cal}{mol} = 0.95\frac{kcal}{mol}$$

Assuming zero Δ Cp and using the value of Δ H from part (c) below, $\Delta G = \Delta H - T\Delta S = 8.59 \frac{kcal}{mol} - (298K) \left(0.0249 \frac{kcal}{mol K} \right) = 8.59 \frac{kcal}{mol} - 7.42 \frac{kcal}{mol} = 1.17 \frac{kcal}{mol}$

By most measures, 0.95 is significantly different from 1.17 (23% different!).

- c) Calculate the value for Δ H at 72°C.
 - This is the Tm, so $\Delta G=0$ at 72°C $\Delta G = \Delta H - T \Delta S = 0$ $\Delta H = T\Delta S = (345K)\left(24.9\frac{cal}{mol\ K}\right) = (345K)\left(24.9\frac{cal}{mol\ K}\right) = 8.59\frac{kcal}{mol\ K}$