Binding Assays

• Non-equilibrium assays that separate complexes
 – Filter binding
 – Pull-down
 – Gel shift

• Equilibrium assays
 – Fluorescence
 • Changes in quantum yield
 • Changes in wavelength maxima
 • Changes in anisotropy
 – Protection assays (quantitative footprinting, etc)
Equilibrium Math

$A + B \xrightleftharpoons[^{K_d}]{\text{←}} AB$
Equilibrium Math

\[A + B \xleftrightarrow{K_d} AB \]

Knowns
Equilibrium Math

\[A + B \xrightleftharpoons[K_d]{.} AB \]

Knowns

\[K_d = \frac{[A][B]}{[AB]} \]
Equilibrium Math

\[A + B \xrightleftharpoons{K_d} AB \]

Knowns

\[
K_d = \frac{[A][B]}{[AB]}
\]

\[
A_T = [A] + [AB]
\]

\[
B_T = [B] + [AB]
\]
Equilibrium Math

\[A + B \xrightleftharpoons{K_d} AB \]

\[
\begin{align*}
[A] &= A_T - [AB] \\
[B] &= B_T - [AB]
\end{align*}
\]

Knowns

\[K_d = \frac{[A][B]}{[AB]} \]

\[
\begin{align*}
A_T &= [A] + [AB] \\
B_T &= [B] + [AB]
\end{align*}
\]
Equilibrium Math

\[A + B \overset{K_d}{\rightleftharpoons} AB \]

Knowns

\[K_d = \frac{[A][B]}{[AB]} \]

\[A_T = [A] + [AB] \]

\[B_T = [B] + [AB] \]

\[K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB]) \]
Equilibrium Math

\[A + B \xrightleftharpoons[K_d]{\leftrightarrow} AB \]

Knowns

\[K_d = \frac{[A][B]}{[AB]} \]

\[A_T = [A] + [AB] \]

\[B_T = [B] + [AB] \]

\[K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB]) \]

\[K_d x = (A_T - x)(B_T - x) \]
Equilibrium Math

\[A + B \xrightleftharpoons{K_d} AB \]

\[
\begin{align*}
[A] &= A_T - [AB] \\
[B] &= B_T - [AB]
\end{align*}
\]

\[
K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB])
\]

\[
K_d x = (A_T - x)(B_T - x)
\]

Knowns

\[
K_d = \frac{[A][B]}{[AB]}
\]

\[
A_T = [A] + [AB]
\]

\[
B_T = [B] + [AB]
\]

Assume \(B_T >> x \)
Equilibrium Math

\[A + B \xrightleftharpoons[K_d]{\text{Kd}} AB \]

Knowns

\[K_d = \frac{[A][B]}{[AB]} \]

\[A_T = [A] + [AB] \]

\[B_T = [B] + [AB] \]

\[K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB]) \]

\[K_d x = (A_T - x)(B_T - x) \]

Assume \(B_T \gg x \)

\[K_d x \approx (A_T - x) B_T \]
Equilibrium Math

\[A + B \xleftrightarrow{K_d} AB \]

Knowns

\[K_d = \frac{[A][B]}{[AB]} \]

\[A_T = [A] + [AB] \]

\[B_T = [B] + [AB] \]

\[
\begin{align*}
[A] &= A_T - [AB] \\
[B] &= B_T - [AB]
\end{align*}
\]

\[
K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB])
\]

\[
K_d x = (A_T - x)(B_T - x)
\]

Assume \(B_T \gg x \)

\[
K_d x \approx (A_T - x)B_T
\]

\[
(B_T + K_d) x \approx A_T B_T
\]
Equilibrium Math

\[
A + B \xrightleftharpoons{K_d} AB
\]

\[
[A] = A_T - [AB]
\]

\[
[B] = B_T - [AB]
\]

\[
K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB])
\]

\[
K_d x = (A_T - x)(B_T - x)
\]

Assume \(B_T \gg x\)

\[
K_d x \approx (A_T - x)B_T \quad x = [AB] \approx \frac{A_T B_T}{B_T + K_d}
\]

\[
(B_T + K_d)x \approx A_T B_T
\]
Equilibrium Math

\[A + B \xrightleftharpoons{K_d} AB \]

Knowns

\[K_d = \frac{[A][B]}{[AB]} \]

\[A_T = [A] + [AB] \]

\[B_T = [B] + [AB] \]

\[
\begin{align*}
[A] &= A_T - [AB] \\
[B] &= B_T - [AB]
\end{align*}
\]

\[
K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB])
\]

\[
K_d x = (A_T - x)(B_T - x)
\]

Assume \(B_T \gg x \)

\[
K_d x \approx (A_T - x)B_T \quad x = [AB] \approx \frac{A_T B_T}{B_T + K_d}
\]

Fraction Bound

\[
(B_T + K_d)x \approx A_T B_T
\]
Equilibrium Math

\[A + B \xleftrightarrow{K_d} AB \]

\[[A] = A_T - [AB] \]
\[[B] = B_T - [AB] \]

\[K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB]) \]
\[K_d x = (A_T - x)(B_T - x) \]

Assume \(B_T >> x \)
\[K_d x \approx (A_T - x)B_T \]
\[(B_T + K_d)x \approx A_T B_T \]

Knowns
\[K_d = \frac{[A][B]}{[AB]} \]
\[A_T = [A] + [AB] \]
\[B_T = [B] + [AB] \]

Fraction Bound
\[\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d} \]
Equilibrium Math

\[A + B \xrightleftharpoons[K_d]{\rightleftharpoons} AB \]
Equilibrium Math

\[A + B \overset{K_d}{\underset{\text{Fraction Bound}}{\leftrightarrow}} AB \]
Equilibrium Math

\[A + B \xrightleftharpoons[K_d]{\quad} AB \]

Fraction Bound

\[
\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d}
\]
Equilibrium Math

\[A + B \xrightleftharpoons[\kappa_d]{\kappa_d} AB \]

Fraction Bound

\[
\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d}
\]

\[
\frac{[PL]}{P_T} \approx \frac{L_T}{L_T + K_d}
\]
Equilibrium Math

\[A + B \xrightleftharpoons[^{K_d}]{\text{↔}} AB \]

Fraction Bound

\[
\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d}
\]

\[
\frac{[PL]}{P_T} \approx \frac{L_T}{L_T + K_d} = f = \frac{1}{1 + \frac{K_d}{L_T}}
\]
Equilibrium Math

\[A + B \overset{K_d}{\rightleftharpoons} AB \]

Fraction Bound

\[
\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d}
\]

\[
\frac{[PL]}{P_T} \approx \frac{L_T}{L_T + K_d} = f = \frac{1}{1 + \frac{K_d}{L_T}}
\]
Equilibrium Math

\[A + B \overset{K_d}{\rightleftharpoons} AB \]

Fraction Bound

\[
\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d}
\]

\[
\frac{[PL]}{P_T} \approx \frac{L_T}{L_T + K_d} = f = \frac{1}{1 + \frac{K_d}{L_T}}
\]

\[f = 1 - K_d \frac{f}{L} \]
Equilibrium Math

\[A + B \xrightleftharpoons[K_d]{\leftarrow} AB \]

Fraction Bound

\[
\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d}
\]

\[
\frac{[PL]}{P_T} \approx \frac{L_T}{L_T + K_d} = f = \frac{1}{1 + \frac{K_d}{L_T}}
\]

\[f = 1 - K_d \frac{f}{L} \]
Equilibrium Math

\[A + B \xrightleftharpoons[K_d]{\text{[AB]}} AB \]

Fraction Bound

\[
\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d}
\]

\[
\frac{[PL]}{P_T} \approx \frac{L_T}{L_T + K_d} = f = \frac{1}{1 + \frac{K_d}{L_T}}
\]

\[
f = 1 - K_d \frac{f}{L}
\]
Equilibrium Math

\[A + B \overset{K_d}{\rightleftharpoons} AB \]

Fraction Bound

\[
\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d}
\]

\[
\frac{[PL]}{P_T} \approx \frac{L_T}{L_T + K_d} = f = \frac{1}{1 + \frac{K_d}{L_T}}
\]
Equilibrium Math

\[A + B \xrightleftharpoons[K_d]{\ \ } AB \]

Fraction Bound

\[
\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d}
\]

\[
\frac{[PL]}{P_T} \approx \frac{L_T}{L_T + K_d} = f = \frac{1}{1 + \frac{K_d}{L_T}}
\]

At half-saturation, \(f = 0.5 \)

\[
f = 0.5 = \frac{1}{1 + \frac{K_d}{L_T}}
\]
Equilibrium Math

\[A + B \xrightleftharpoons[K_d]{\text{\(\rightleftharpoons\)}} AB \]

Fraction Bound

\[
\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d} \\
\frac{[PL]}{P_T} \approx \frac{L_T}{L_T + K_d} = f = \frac{1}{1 + \frac{K_d}{L_T}}
\]

At half-saturation, \(f = 0.5 \)

\[
f = 0.5 = \frac{1}{1 + \frac{K_d}{L_T}}
\]

\[
0.5 + 0.5 \frac{K_d}{L_T} = 1
\]
Equilibrium Math

\[A + B \xleftrightarrow{K_d} AB \]

Fraction Bound

\[\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d} \]

\[\frac{[PL]}{P_T} \approx \frac{L_T}{L_T + K_d} = f = \frac{1}{1 + \frac{K_d}{L_T}} \]

At half-saturation, \(f = 0.5 \)

\[f = 0.5 = \frac{1}{1 + \frac{K_d}{L_T}} \quad 0.5 \frac{K_d}{L_T} = 0.5 \]

\[0.5 + 0.5 \frac{K_d}{L_T} = 1 \]
Equilibrium Math

\[A + B \overset{K_d}{\leftrightarrow} AB \]

Fraction Bound

\[
\frac{[AB]}{A_T} \approx \frac{B_T}{B_T + K_d}
\]

\[
\frac{[PL]}{P_T} \approx \frac{L_T}{L_T + K_d} = f = \frac{1}{1 + \frac{K_d}{L_T}}
\]

At half-saturation, \(f = 0.5 \)

\[
f = 0.5 = \frac{1}{1 + \frac{K_d}{L_T}} \quad 0.5 \frac{K_d}{L_T} = 0.5
\]

\[
0.5 + 0.5 \frac{K_d}{L_T} = 1 \quad L_T = K_d
\]
Ligand binding titration

$[P]_T = 0.1 \mu M$
Ligand binding titration

$[P]_T = 0.1 \mu M$
Ligand binding titration

\[[P]_T = 0.1 \mu M \]
Fluorescence Anisotropy Titration

\[[P] = 0.1 \, \mu M \]
Fluorescence Anisotropy Titration

- Scatchard Analysis
 - Pick beginning and end values
 - Calculate \(v \) & \(v/\left[L \right] \)
 - Plot \(v/\left[L \right] \) vs \(v \)

\[[P] = 0.1 \mu M \]
Fluorescence Anisotropy Titration

- Scatchard Analysis
 - Pick beginning and end values
 - Calculate \(v \) & \(v/[L] \)
 - Plot \(v/[L] \) vs \(v \)

\([P] = 0.1 \mu M \)
Scatchard Analysis

Slope = -0.27 ± 0.05
Intercept = 0.41 ± 0.04
Correlation Coefficient = -0.74

leads to

K = 0.27 ± 0.05 µM
n = 1.5

How many binding sites?
Direct Fit Gives a Better Result

\[[P] = 0.1 \, \mu M \]

\[K = 0.27 \pm 0.05 \, \mu M \]

\[A_{\text{bound}} = 0.28 \]

\[A_{\text{unbound}} = 0.12 \]
Direct Fit Gives a Better Result

\[K = 1.35 \pm 0.66 \mu M \]

\[A_{\text{bound}} = 0.312 \pm 0.012 \]
\[A_{\text{unbound}} = 0.087 \pm 0.040 \]

\[[P] = 0.1 \mu M \]

\[K = 0.27 \pm 0.05 \mu M \]

\[A_{\text{bound}} = 0.28 \]
\[A_{\text{unbound}} = 0.12 \]
Direct Fit Gives a Better Result

\[K = 1.35 \pm 0.66 \ \mu M \]
\[A_{\text{bound}} = 0.312 \pm 0.012 \]
\[A_{\text{unbound}} = 0.087 \pm 0.040 \]

\[K = 0.27 \pm 0.05 \ \mu M \]
\[A_{\text{bound}} = 0.28 \]
\[A_{\text{unbound}} = 0.12 \]
Direct Fit Gives a Better Result

$K = 1.35 \pm 0.66 \mu M$

$A_{\text{bound}} = 0.312 \pm 0.012$

$A_{\text{unbound}} = 0.087 \pm 0.040$

$K = 0.27 \pm 0.05 \mu M$

$A_{\text{bound}} = 0.28$

$A_{\text{unbound}} = 0.12$

$[P] = 0.1 \mu M$
Direct Fit Gives a Better Result

\[K = 1.35 \pm 0.66 \, \mu M \]
\[A_{\text{bound}} = 0.312 \pm 0.012 \]
\[A_{\text{unbound}} = 0.087 \pm 0.040 \]

\[K = 0.27 \pm 0.05 \, \mu M \]
\[A_{\text{bound}} = 0.28 \]
\[A_{\text{unbound}} = 0.12 \]

[\[P\] = 0.1 \, \mu M]
Direct fit
$K = 1.35 \pm 0.66 \, \mu M$

$A_{\text{bound}} = 0.312 \pm 0.012$
$A_{\text{unbound}} = 0.087 \pm 0.040$

Weighted fit
$K = 0.75 \pm 0.20 \, \mu M$
$n = 0.99$

Fixed
$A_{\text{bound}} = 0.312$
$A_{\text{unbound}} = 0.087$

Unweighted fit
$K = 0.57 \pm 0.07 \, \mu M$
$n = 1.06$
Direct fit

\[K = 1.35 \pm 0.66 \, \mu M \]

\[A_{\text{bound}} = 0.312 \pm 0.012 \]
\[A_{\text{unbound}} = 0.087 \pm 0.040 \]

Weighted fit

\[K = 0.75 \pm 0.20 \, \mu M \]
\[n = 0.99 \]

Unweighted fit

\[K = 0.57 \pm 0.07 \, \mu M \]
\[n = 1.06 \]

Fixed

\[K = 1.0 \]
\[A_{\text{bound}} = 0.312 \]
\[A_{\text{unbound}} = 0.087 \]
Tight binding - requires exact solution

\[[P]_T = 1.0 \, \mu M \]
Equilibrium Math

\[A + B \xrightleftharpoons{K_d} AB \]

\[
\begin{align*}
[A] &= A_T - [AB] \\
[B] &= B_T - [AB]
\end{align*}
\]

Knowns

\[
K_d = \frac{[A][B]}{[AB]}
\]

\[
\begin{align*}
A_T &= [A] + [AB] \\
B_T &= [B] + [AB]
\end{align*}
\]
Equilibrium Math

\[A + B \xrightleftharpoons{K_d} AB \]

\[
\begin{align*}
[A] &= A_T - [AB] \\
[B] &= B_T - [AB]
\end{align*}
\]

\[
K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB])
\]

Knowns

\[
K_d = \frac{[A][B]}{[AB]}
\]
\[
A_T = [A] + [AB]
\]
\[
B_T = [B] + [AB]
\]
Equilibrium Math

\[A + B \overset{K_d}{\longleftrightarrow} AB \]

\[
\begin{align*}
[A] &= A_T - [AB] \\
[B] &= B_T - [AB]
\end{align*}
\]

\[
K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB])
\]

\[
K_d x = (A_T - x)(B_T - x)
\]

Knowns

\[
K_d = \frac{[A][B]}{[AB]}
\]

\[
A_T = [A] + [AB]
\]

\[
B_T = [B] + [AB]
\]
Equilibrium Math

\[A + B \xrightleftharpoons[K_d]{\longrightarrow} AB \]

\[
\begin{align*}
[A] &= A_T - [AB] \\
[B] &= B_T - [AB]
\end{align*}
\]

\[
K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB])
\]

\[
K_d x = (A_T - x)(B_T - x)
\]

Assume \(B_T \gg x \)
Equilibrium Math

$A + B \xrightarrow{K_d} AB$

$[A] = A_T - [AB]$
$[B] = B_T - [AB]$

$K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB])$

$K_d x = (A_T - x)(B_T - x)$

Assume $B_T >> x$

$x^2 - (A_T + B_T + K_d)x + A_T B_T = 0$
Equilibrium Math

\[A + B \xleftrightarrow{K_d} AB \]

Knowns

\[K_d = \frac{[A][B]}{[AB]} \]
\[A_T = [A] + [AB] \]
\[B_T = [B] + [AB] \]

\[K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB]) \]

\[K_d x = (A_T - x)(B_T - x) \]

Assume \(B_T \gg x \)

\[x^2 - (A_T + B_T + K_d)x + A_T B_T = 0 \]

\[ax^2 + bx + c = 0 \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
Equilibrium Math

\[A + B \xrightleftharpoons{K_d} AB \]

\[
\begin{align*}
[A] &= A_T - [AB] \\
[B] &= B_T - [AB]
\end{align*}
\]

\[K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB]) \]

\[K_d x = (A_T - x)(B_T - x) \]

Assume \(B_T >> x\)

\[x^2 - (A_T + B_T + K_d)x + A_T B_T = 0 \]

\[ax^2 + bx + c = 0 \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
Equilibrium Math

\[
A + B \overset{K_d}{\rightleftharpoons} AB
\]

\[
[A] = A_T - [AB]
\]

\[
[B] = B_T - [AB]
\]

\[
K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB])
\]

\[
K_d x = (A_T - x)(B_T - x)
\]

Assume \(B_T \gg x\)

\[
x^2 - (A_T + B_T + K_d)x + A_T B_T = 0
\]

\[
ax^2 + bx + c = 0 \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

\[
x = \frac{(A_T + B_T + K_d) - \sqrt{(A_T + B_T + K_d)^2 - 4A_T B_T}}{2}
\]
Equilibrium Math

\[A + B \xrightleftharpoons{K_d} AB \]

\[
[A] = A_T - [AB] \\
[B] = B_T - [AB]
\]

\[K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB]) \]

\[K_d x = (A_T - x)(B_T - x) \]

Assume \(B_T \gg x \)

\[x^2 - (A_T + B_T + K_d)x + A_T B_T = 0 \]

\[a x^2 + b x + c = 0 \]

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[x = \frac{(A_T + B_T + K_d) - \sqrt{(A_T + B_T + K_d)^2 - 4A_T B_T}}{2} = [AB] \]

Knowns

\[K_d = \frac{[A][B]}{[AB]} \]

\[A_T = [A] + [AB] \]

\[B_T = [B] + [AB] \]
Equilibrium Math

\[A + B \xrightleftharpoons{K_d} AB \]

\[[A] = A_T - [AB] \]
\[[B] = B_T - [AB] \]

\[K_d [AB] = [A][B] = (A_T - [AB])(B_T - [AB]) \]

\[K_d x = (A_T - x)(B_T - x) \]

Assume \(B_T \gg x \)

\[x^2 - (A_T + B_T + K_d) x + A_T B_T = 0 \]

\[a x^2 + b x + c = 0 \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[x = \frac{(A_T + B_T + K_d) - \sqrt{(A_T + B_T + K_d)^2 - 4A_T B_T}}{2} \]

Fraction Bound

\[\frac{[AB]}{A_T} = [AB] \]
Equilibrium Math

\[A + B \xrightleftharpoons[K_d]{\rightleftharpoons} AB \]

\[x = \frac{(A_T + B_T + K_d)^2 - 4A_T B_T}{2} = [AB] \]
Equilibrium Math

\[A + B \xrightleftharpoons{K_d} AB \]

\[x = \frac{(A_T + B_T + K_d) - \sqrt{\left(A_T + B_T + K_d \right)^2 - 4A_T B_T}}{2} = [AB] \]

Fraction Bound

\[f = \frac{[AB]}{A_T} = \frac{(A_T + B_T + K_d) - \sqrt{\left(A_T + B_T + K_d \right)^2 - 4A_T B_T}}{2A_T} \]

At half-saturation, \(f=0.5 \)

\[0.5 = \frac{[AB]}{A_T} = \frac{(A_T + B_T + K_d) - \sqrt{\left(A_T + B_T + K_d \right)^2 - 4A_T B_T}}{2A_T} \]

\[A_T = (A_T + B_T + K_d) - \sqrt{\left(A_T + B_T + K_d \right)^2 - 4A_T B_T} \]

\[B_T + K_d = \sqrt{\left(A_T + B_T + K_d \right)^2 - 4A_T B_T} \quad 0 = A_T^2 + 2A_T K_d - 2A_T B_T \]

\[(B_T + K_d)^2 = (A_T + B_T + K_d)^2 - 4A_T B_T \quad B_T = \frac{1}{2} A_T + K_d \]
Equilibrium Math

\[P + L \overset{K_d}{\rightleftharpoons} PL \]

Assume $L >> P$

Fraction Bound

\[f \approx \frac{1}{1 + \frac{K_d}{L_T}} \]

At half-saturation, $f=0.5$

\[L_T = K_d \]
Equilibrium Math

\[P + L \rightleftharpoons ^{K_d} PL \]

Assume \(L >> P \)

Fraction Bound

\[f \approx \frac{1}{1 + \frac{K_d}{L_T}} \]

At half-saturation, \(f = 0.5 \)

\[L_T = K_d \]

No assumptions

Fraction Bound

\[f = \frac{[PL]}{P_T} = \frac{\left(P_T + L_T + K_d \right)}{2P_T} - \sqrt{\left(P_T + L_T + K_d \right)^2 - 4P_T L_T} \]
Equilibrium Math

\[P + L \xleftrightarrow{K_d} PL \]

Assume L >> P

Fraction Bound

\[f \approx \frac{1}{1 + \frac{K_d}{L_T}} \]

At half-saturation, \(f=0.5 \)

\[L_T = K_d \]

No assumptions

Fraction Bound

\[f = \frac{[PL]}{P_T} = \frac{(P_T + L_T + K_d) - \sqrt{(P_T + L_T + K_d)^2 - 4P_TL_T}}{2P_T} \]

At half-saturation, \(f=0.5 \)

\[L_T = \frac{1}{2} P_T + K_d \]
Inhibition

Assume $L \gg K_d$

Fix $L \gg P$

Titrate in I

Fraction Bound

\[f \approx 1 - \frac{[I]}{[I] + IC_{50}} \]

Looks similar to the binding equation

...BUT beware the assumptions!