90° Pulse - the foundation of an FID

Torque $\tau = \mu_m \times \vec{H}_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta$
90° Pulse - the foundation of an FID

Torque \(\tau = \mu_m \times \vec{H}_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta \)

- If we apply \(H_{xy} \) for just the right amount of time (only), we can rotate \(\mu_m \) exactly 90°, placing it in the xy-plane.
90° Pulse - the foundation of an FID

If we apply H_{xy} for just the right amount of time (only), we can rotate μ_m exactly 90°, placing it in the xy-plane.

Torque $\tau = \mu_m \times H_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta$

- If we apply H_{xy} for just the right amount of time (only), we can rotate μ_m exactly 90°, placing it in the xy-plane.
90° Pulse - the foundation of an FID

- If we apply H_{xy} for just the right amount of time (only), we can rotate μ_m exactly 90°, placing it in the xy-plane.

- The bulk magnetization, μ_m will then precess around H_z. If we place a detector in the xy-plane, we will see a magnetic moment that oscillates in a sinusoidal fashion at exactly ω_0.

Torque $\tau = \mu_m \times H_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta$
90° Pulse - the foundation of an FID

If we apply \(H_{xy} \) for just the right amount of time (only), we can rotate \(\mu_m \) exactly 90°, placing it in the xy-plane.

The bulk magnetization, \(\mu_m \) will then precess around \(H_z \). If we place a detector in the xy-plane, we will see a magnetic moment that oscillates in a sinusoidal fashion at exactly \(\omega_0 \).
90° Pulse - the foundation of an FID

- If we apply H_{xy} for just the right amount of time (only), we can rotate μ_m exactly 90°, placing it in the xy-plane.

- The bulk magnetization, μ_m will then precess around H_z. If we place a detector in the xy-plane, we will see a magnetic moment that oscillates in a sinusoidal fashion at exactly ω_0.

Torque = $\tau = \vec{\mu}_m \times \vec{H}_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta$
90° Pulse - the foundation of an FID

- If we apply H_{xy} for just the right amount of time (only), we can rotate μ_m exactly 90°, placing it in the xy-plane.

- The bulk magnetization, μ_m will then precess around H_z. If we place a detector in the xy-plane, we will see a magnetic moment that oscillates in a sinusoidal fashion at exactly ω_0.

Torque = $\tau = \mu_m \times H_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta$
90° Pulse - the foundation of an FID

- If we apply H_{xy} for just the right amount of time (only), we can rotate μ_m exactly 90°, placing it in the xy-plane.

- The bulk magnetization, μ_m will then precess around H_z. If we place a detector in the xy-plane, we will see a magnetic moment that oscillates in a sinusoidal fashion at exactly ω_0.
90° Pulse - the foundation of an FID

- If we apply H_{xy} for just the right amount of time (only), we can rotate μ_m exactly 90°, placing it in the xy-plane.

- The bulk magnetization, μ_m will then precess around H_z. If we place a detector in the xy-plane, we will see a magnetic moment that oscillates in a sinusoidal fashion at exactly ω_0.

Torque $\tau = \mu_m \times H_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta$
90° Pulse - the foundation of an FID

If we apply H_{xy} for just the right amount of time (only), we can rotate μ_m exactly 90°, placing it in the xy-plane.

The bulk magnetization, μ_m will then precess around H_z. If we place a detector in the xy-plane, we will see a magnetic moment that oscillates in a sinusoidal fashion at exactly ω_0.

Torque $\tau = \vec{\mu}_m \times \vec{H}_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta$
90° Pulse - the foundation of an FID

- If we apply H_{xy} for just the right amount of time (only), we can rotate μ_{m} exactly 90°, placing it in the xy-plane.

- The bulk magnetization, μ_{m} will then precess around H_{z}. If we place a detector in the xy-plane, we will see a magnetic moment that oscillates in a sinusoidal fashion at exactly ω_{0}.

Torque $= \tau = \mu_{m} \times H_{xy} = \mu_{m} \cdot H_{xy} \cdot \sin \theta$
90° Pulse - the foundation of an FID

• If we apply H_{xy} for just the right amount of time (only), we can rotate μ_m exactly 90°, placing it in the xy-plane.

• The bulk magnetization, μ_m will then precess around H_z. If we place a detector in the xy-plane, we will see a magnetic moment that oscillates in a sinusoidal fashion at exactly ω_0.

Torque $= \tau = \mu_m \times H_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta$
90° Pulse - the foundation of an FID

- If we apply H_{xy} for just the right amount of time (only), we can rotate μ_m exactly 90°, placing it in the xy-plane.

- The bulk magnetization, μ_m will then precess around H_z. If we place a detector in the xy-plane, we will see a magnetic moment that oscillates in a sinusoidal fashion at exactly ω_0.

$\cos(\omega_0 t)$

Torque $\tau = \mu_m \times H_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta$
90° Pulse - the foundation of an FID

\[\cos(\omega_0 t) \]

\[\text{Torque} = \tau = \vec{\mu}_m \times \vec{H}_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta \]
90° Pulse - the foundation of an FID

\[\cos(\omega_0 t) \]

Fourier Transform

Torque = \(\tau = \vec{\mu}_m \times \vec{H}_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta \)
90° Pulse - the foundation of an FID

\[
\cos(\omega_0 t)
\]

Fourier Transform

\[
\text{Torque} = \tau = \vec{\mu}_m \times \vec{H}_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta
\]
90° Pulse - the foundation of an FID

\[\cos(\omega_0 t) \]

Fourier Transform

Torque \(\tau = \vec{\mu}_m \times \vec{H}_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta \)
90° Pulse - the foundation of an FID

\[\cos(\omega_0 t) \]

Fourier Transform

Torque \(\tau = \vec{\mu}_m \times \vec{H}_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta \)
90° Pulse - the foundation of an FID

\[
\cos(\omega_0 t)
\]

Torque \(\tau = \mu_m \times H_{xy} = \mu_m \cdot H_{xy} \cdot \sin \theta \)
Bulk Magnetization
Bulk Magnetization
Bulk Magnetization

T1 relaxation
Bulk Magnetization
T1 relaxation
Bulk Magnetization

T1 relaxation
Bulk Magnetization
Bulk Magnetization

![Diagram of bulk magnetization with axes labeled x, y, and z, and a detector marked on the x-axis.]
Bulk Magnetization

Detector
Bulk Magnetization
Bulk Magnetization

(Lab Frame) (Rotating Frame)
Bulk Magnetization

(Lab Frame) (Rotating Frame)
Bulk Magnetization

(Lab Frame) (Rotating Frame)
Bulk Magnetization

(Lab Frame)

(Rotating Frame)
Collecting a spectrum

1D spectrum 90(ϕ) - observe
Collecting a spectrum

1D spectrum $90(\phi)$ - observe
(Rotating Frame)
Collecting a spectrum

1D spectrum $90(\phi)$ - observe

(Rotating Frame)
Collecting a spectrum

1D spectrum $90(\phi)$ - observe

(Rotating Frame)
Collecting a spectrum

1D spectrum $90(\phi)$ - observe

(Rotating Frame)
Bulk Magnetization

(rotating frame)

90 - τ - 180 - observe "spin echo"
Bulk Magnetization

(rotating frame)

90 - \(\tau \) - 180 - observe "spin echo"
Bulk Magnetization

(rotating frame)

90 - τ - 180 - observe “spin echo”
Bulk Magnetization

(rotating frame)

90 - τ - 180 - observe “spin echo”
Bulk Magnetization

(rotating frame)

90 - \(\tau\) - 180 - observe "spin echo"
Bulk Magnetization

(rotating frame)

90 - \(\tau\) - 180 - observe “spin echo”
Bulk Magnetization

(rotating frame)

90 - τ - 180 - observe “spin echo”
Bulk Magnetization

(rotating frame)

90 - τ - 180 - observe "spin echo"
Bulk Magnetization

(rotating frame)

90 - τ - 180 - observe "spin echo"
Bulk Magnetization

(rotating frame)

90 - τ - 180 - observe "spin echo"
Bulk Magnetization

(rotating frame)

90 - τ - 180 - observe "spin echo"

180° pulse

xy
Bulk Magnetization

(rotating frame)

90 - \(\tau\) - 180 - observe "spin echo"
Bulk Magnetization

(rotating frame)

90 - τ - 180 - observe "spin echo"
Pulse Sequences

90 - τ - 180 - observe “spin echo”

- The above is the simplest “two dimensional” NMR pulse sequence
- The time τ is the first “dimension”
- The observe time is the second “dimension”