
Core Course 2002
Homework Part II, Problem Set 2

1. a) In the example of formaldehyde discussed in class, we concluded that the n->π*
transition was strictly forbidden. For formaldehyde, you can make a very simple argument
that in fact, this is not strictly true. Symmetry dictates that the transition will not be
completely forbidden. Explain (bring some of what you learned from the first half of the
course; the conclusion would be true for ethylene).

Since the electronegativities of C and O are different, the � and �* orbitals will be
distorted (the � orbital electron density towards O).
WHOOPS! My error. As detailed below, the transitions are still as before

b) Reevaluate the integrals as we did in class, but now using your new understanding of
formaldehyde. For single crystals of formaldehyde, predict whether light polarized along x,
y, and z will induce each transition.

The � and �* orbitals will now no longer have odd symmetry with respect to the
x–axis (but symmetry with respect to y or z will remain unchanged). The
symmetries won’t be even either, so the effect is that the integrals containing
transitions to or from these orbitals can no longer go completely to zero when the
light inducing the transition is polarized along the x axis.



Thus
Transition light polarized along Transition is (Transition was)
� -> �* x Allowed Allowed

y Forbidden Forbidden
z Forbidden Forbidden

n -> �* x Forbidden Forbidden
y Forbidden Forbidden
z Forbidden Forbidden

2. We have seen that quenching of
fluorescence can depend on the
concentration of the quenching
agent. Assuming that quenching is
first order with respect to the
quencher Q (with a first order rate
constant of kq), derive an expression
for the ratio of the fluorescence in
the absence of quencher to that in the
presence of quencher, Fo/FQ, as a
function of [Q], kq,  and τo (the
lifetime of the excited state in the
absence of quencher).
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3. For the particle in a box problem,
a) show that the following is an eigenfunction
of H.
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b) show that this is a normalized wavefunction
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Potentially useful equations:
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