Core Course 2002 Homework Part II, Problem Set 2

a) For the two 10-particle, two-state subsystems discussed in class, suppose the total energy to be shared between the two objects (ie., of the system overall) is U = U_A + U_B = 4, what is the distribution of energies that gives the highest multiplicity?
In other words, the subsystems can exchange energy, but not particles (mass).

System

- b) Assuming that the energy separation in this system is 3.83×10^{-21} J, what is the temperature of the above system?
- c) Express the above energy separation in terms of J/mol of particles.
- d) Express the above energy separation in terms of kcal/mol. Compare that to the energies of the various spectroscopies on your hand out of last week.
- 2. a) Consider an optical transition in the near-IR, at 800 nm. What is the ratio of excited to ground state population at room temperature (25° C)?
 - b) What is the ratio for that same transition at 77 K, what is the ratio at 10 K?
- 3. You flip a coin 5 times and record the number of "heads." Computer W for each of the possible outcomes listed below. Which is most probable?

0 heads	
1 heads	
2 heads	
3 heads	
4 heads	
5 heads	