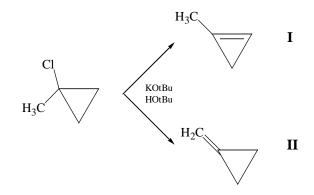

NAME:_____

STUDENT ID #: _____


Answer all questions briefly but as clearly as you can. Clearly show your work and reasoning.

1. Epoxidation is a typical reaction of alkenes. Use the bond energies given below to estimate the exothermicity of a hypothetical catalytic epoxidation of an alkene by hydrogen peroxide. (50 pts)

 $\Delta E(C-C) = 85 \text{ kcal/mol}, \Delta E(C-O) = 87 \text{ kcal/mol}, \Delta E(C=C \text{ pi only}) = 65 \text{ kcal/mol}, \Delta E(O-O) = 51 \text{ kcal/mol}, \Delta E(O-H) = 119 \text{ kcal/mol}, \Delta E(C-H) = 98 \text{ kcal/mol}, \text{ three-ring strain} = 27.6 \text{ kcal/mol}.$

2. Use the Benson equivalent data to estimate the difference in energy between products I and II. (35 pts). Product II is isolated from the reaction. Does this fit the pseudothermodynamic model (briefly explain using a diagram that shows the relative energies of I and II)? (15 pts)

	Group Equivalents in kcal/mol			
C(H)3(Cd)	-10.1	C(H)2(C)2		-5.0
C(H)2(Cd)2	-4.3	C(H)2(C)(Cd)		-4.8
C(H)(C)3	-1.9	Cd(C)(C)		10.3
Cd(H)(H)	6.3	Cd(C)(H)		8.6
	Cyclopropane strain energy with external sp ² carbon		40.9	
	Cyclopropane with internal alkene C=C		53.7	