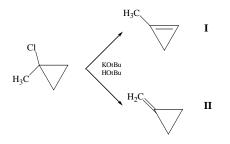

Chemistry 891G

CORE COURSE

QUIZ #1 (100 points)

Answer all questions as completely as you can. Clearly show your work and reasoning.

1. Epoxidation is a typical reaction of alkenes. Use the bond energies given below to estimate the exothermicity of a hypothetical catalytic epoxidation of an alkene by hydrogen peroxide. (50 pts)



 $\Delta E(C-C) = 85 \text{ kcal/mol}, \Delta E(C-O) = 87 \text{ kcal/mol}, \Delta E(C=C \text{ pi}) = 65 \text{ kcal/mol}, \Delta E(O-O) = 51 \text{ kcal/mol}, \Delta E(O-H) = 119 \text{ kcal/mol}, \Delta E(C-H) = 98 \text{ kcal/mol}, \text{ three-ring strain} = 27.6 \text{ kcal/mol}.$

 $\Delta H(reaction) = -enthalpy of product bonds made + enthalpy of reactant bonds broken$

so, consider the NET bonds formed and broken, to get = $\{-2(C-O) - (O-H)\} + (C=C + O-O + O-H\}$ (three bonds made, three bonds broken) + strain = -2(87) - (119) + 27.6 + 65 + 51 + 119 + 27.6 (strain is + on products side, anti-enthalpic) = -30 kcal/mol, a substantially exothermic reaction, despite three ring formation

2. Use the Benson equivalent data to estimate the difference in energy between products I and II. (35 pts). Product II is isolated from the reaction. Does this fit the pseudothermodynamic model (briefly explain using a diagram that shows the relative energies of I and II)? (15 pts)

C(H)3(Cd)	-10.1	C(H)2(C)2	-5.0
C(H)2(Cd)2	-4.3	C(H)2(C)(Cd)	-4.8
C(H)(C)3	-1.9	Cd(C)(C)	10.3
Cd(H)(H)	6.3	Cd(C)(H)	8.6
Cyclobutane strain	27.6	Cyclopropane strain	26.2
Cyclopropane with internal alkene	53.7	Cyclopropane fused to sp ² carbon	40.9

 $\Delta H(\mathbf{I}) = C(H)3(Cd) + C(H)2(Cd)2 + Cd(C)(C) + Cd(C)(H) + \{cyclopropane strain with internal alkene) \\ = -10.1 + (-4.3) + 10.3 + 8.6 + 53.7 \text{ (only one strain correction per ring)} \\ = +58.2 \text{ kcal/mol}$

 $\Delta H(II) = 2C(H)2(C)(Cd) + Cd(C)(C) + Cd(H)(H) + \{cyclopropane \text{ fused to sp}^2 \text{ carbon})$ = 2(-4.8) + 10.3 + 6.3 + 40.9 = +47.9 kcal/mol

II is thermodyamically preferred (less positive enthalpy of formation). Since it is isolated from the reaction and is most stable, it is likely that it is formed first (though not a sure thing), so this fits the pseudothermodynamic model. Note that the *most* substituted alkene is *not* the most stable in this particular case (due to ring strain!).