\qquad

Please show your work, and your thinking, in the space provided. Be brief, but complete. Long, wandering answers typically demonstrate a lack of understanding...

$\hbar=1.054 \times 10^{-34} \mathrm{Js}$ $h=6.626 \times 10^{-34} \mathrm{Js}$ $e=1.602 \times 10^{-19} \mathrm{C}$ $m_{e}=9.109 \times 10^{-31} \mathrm{~kg}$ $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ $4 \pi \varepsilon_{o}=1.113 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$ $k=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ $N_{0}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$	Particle in a 1D box			
$H_{\text {translational }}=\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \quad \psi_{n}=\left(\frac{2}{L}\right)^{1 / 2} \sin \left(\frac{n \pi x}{L}\right)$				
translational				
	$=\frac{\hbar}{i} \frac{d}{d x}$	$E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}} \quad n=1,2,3, \ldots$		
	$A=\frac{I_{\\|}-I_{\perp}}{I_{\\|}+2 I_{\perp}}$			

For $z=x+i y, \quad z^{*}=x-i y$

1. (20 points) You are carrying out fluorescence measurements on a molecule in solution whose electronic properties are described at right. When you go to carry out fluorescence anisotropy measurements using the S_{o} to S_{2} transition shown, you find that the anisotropy is negative. What behavior would lead to negative anisotropy? Explain how this might occur.

\qquad
2. Consider the following molecules:

C

D

E

F

In the following, indicate ranking as follows: $\mathbf{C}<\mathbf{D}<(\mathbf{A}, \mathbf{B})<\mathbf{E}$ where, for example, (A, B) indicates that you don't have enough information to predict a significant difference between A and B.

Don't pull your hair out on this one...
a) (10 points) use simple considerations to rank them in terms of their expected extinction coefficients (lowest to highest):
b) (10 points) use simple considerations to rank them in terms of their expected wavelengths of maximal absorbance (lowest to highest):
3. Consider fluorescence for two otherwise identical molecules you are studying.

Molecule A has an internal conversion rate constant of $\mathbf{0 . 2} \mathbf{~ n s e c}^{-1}$.
Molecule B has an internal conversion rate constant of $\mathbf{1 . 0}$ nsec $^{-1}$.
Assuming all else equal:
a) (15 points) Which will have the higher fluorescence intensity?
b) (15 points) Consider the fluorescence decay curves shown at right. In the experiment, you excite briefly with a laser, turn it off, and then monitor fluorescence as a function of time. Assign each curve to either molecule A or B.

\qquad
4. The location of an electron constrained to move on a ring is given by the angle ϕ, where $0 \leq \phi \leq 2 \pi$. The Hamiltonian for the system is:

$$
H=\frac{-\hbar^{2}}{2 I} \frac{d^{2}}{d \phi^{2}} \quad I=m_{e} r^{2}
$$

Given the wavefuntion: $\quad \psi_{m}(\phi)=A e^{i m \phi} \quad$ (in this case, m is a quantum number)
a) (15 points) Derive the value of the constant A (do not use a calculator)
b) (15 points) Derive the energy levels for this system (do not use a calculator).
c) (Small extra credit) What molecule might this be good for?

