Name: _____

Please show your work, and your thinking, in the space provided. Be brief, but complete. Long, wandering answers typically demonstrate a lack of understanding...

$h = 1.054 \times 10^{-34} J s$ $h = 6.626 \times 10^{-34} J s$ $c = 2.998 \times 10^8 m s^{-1}$ $k = 1.381 \times 10^{-23} J K^{-1}$	$m_e = 9.109 \times 10^{-31} kg$ $e = 1.602 \times 10^{-19} C$ $N_0 = 6.022 \times 10^{23} mol^{-1}$ $\pi = 3.14159$	$W = \frac{N!}{n_1! n_2! \dots n_t!} \qquad S = k \ln W$ $W_{total} = W_A W_B \qquad S_{total} = S_A + S_B$
$U = \sum_{i=1}^{t} N_i \varepsilon_i$	$\partial U = \partial q + \partial w \qquad \partial w = -P \partial V$	$x! \approx \left(\frac{x}{e}\right)^x$ $\ln(x!) \approx x \ln\left(\frac{x}{e}\right) = x \ln(x) - x$
H = U + PV	G = H - TS	$E = h\upsilon = \frac{hc}{\lambda}$
	$\int \int $	$\frac{n_B}{n_A} = e^{-\frac{\varepsilon_B - \varepsilon_A}{kT}}$
	$+\left(\frac{\partial U}{\partial V}\right)_{S,N}\partial V + \sum_{j=1}^{M} \left(\frac{\partial U}{\partial N_{j}}\right)_{S,V,N_{i \neq j}} \partial N_{j}$	$C_{p} = \left(\frac{\partial q}{\partial T}\right)_{p} = \left(\frac{\partial H}{\partial T}\right)_{p} = T\left(\frac{\partial S}{\partial T}\right)_{p}$
$\partial U = T \partial S - p \partial V$	$+\sum_{j=1}^{j} \mu_j \partial N_j$	$\mu_{j} = \left(\frac{\partial U}{\partial n_{j}}\right)_{V,S,n} = \left(\frac{\partial G}{\partial n_{j}}\right)_{T,P,n} = \left(\frac{\partial H}{\partial n_{j}}\right)_{S,P,n}$
$\partial S = -\frac{1}{T} \partial U +$	$- \frac{p}{T} \partial V - \sum_{j=1}^{M} \frac{\mu_j}{T} \partial N_j$	$ \left(\partial n_j \right)_{V,S,n_{i\neq j}} \left(\partial n_j \right)_{T,P,n_{i\neq j}} \left(\partial n_j \right)_{S,P,n_{i\neq j}} $

1. (15 points) Using what you know about chemistry, which of the following equations are true and which are false? You need not do any deriving here. Simply use common sense.

$T = \left(\frac{\partial S}{\partial U}\right)_{V,N}$	True	False
$p = -\left(\frac{\partial U}{\partial V}\right)_{S,N}$	True	False
$\mu_{j} = \left(\frac{\partial U}{\partial N_{j}}\right)_{S,V,N_{i \neq j}}$	True	False

2. a) (20 points) Consider an NMR experiment in a field for which protons resonate (transitions from ground to excited state occur when subjected to radiowaves) at a frequency of 800 MHz. What is the ratio of excited to ground state population at room temperature (25° C)?

b) (15 points) What is the ratio for that same transition at at 1.0 K?

3. a) (15 points) Assuming ΔH° and ΔS° independent of temperature, derive, in terms of only ΔH° and/or ΔS° (and appropriate fundamental constants), an expression for:

$$\frac{\partial \ln \left(K_{eq}\right)}{\partial \left(\frac{1}{T}\right)} =$$

b) (10 points) From simple extensions of the Boltzmann equation as we've seen it, we can derive for any reaction:

$$K_{eq} = e^{-\frac{\Delta G^o}{RT}}$$

Use the answer to part (a) to derive an expression for the temperature dependence of the equilibrium constant. In other words, derive K_{T_2} in terms of T_1 , T_2 , K_{T_1} , ΔH° , and/or ΔS° (and appropriate fundamental constants).

4. For the mixing of a two component system, n_A molecules of A and n_B molecules of B, the multiplicity of states is given by:

$$W = \frac{N!}{n_A! n_B!} \qquad N = n_A + n_B$$

Remember also that the mole fraction for each is defined as: $\chi_i = \frac{n_i}{N}$

a) (15 points) Consider the mixing of two solutions. Derive the entropy of mixing in terms of χ_A and χ_B - Remembering that there are a *large* number of molecules in a real system, show that $\Delta S_{mix} = -k[n_A \ln \chi_A + n_B \ln \chi_B]$

b) (10 points) Finally, express ΔS_{mix} in terms of N and χ_A only (you can use the result from part (a) that is already given to you)