\qquad

Please show your work, and your thinking, in the space provided. Be brief, but complete. Long, wandering answers typically demonstrate a lack of understanding...

$$
\begin{aligned}
& \hbar=1.054 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& h=6.626 \times 10^{-34} \mathrm{~J} s \quad e=1.602 \times 10^{-19} \mathrm{C} \\
& c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \quad N_{0}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
& k=1.381 \times 10^{-23} J \mathrm{~K}^{-1} \quad \pi=3.14159 \\
& U=\sum_{i=1}^{t} N_{i} \varepsilon_{i} \quad \partial U=\partial q+\partial w \quad \partial w=-P \partial V \\
& H=U+P V \quad G=H-T S \\
& W=\frac{N!}{n_{1}!n_{2}!\ldots n_{t}!} \quad S=k \ln W \\
& W_{\text {total }}=W_{A} W_{B} \quad S_{\text {totala }}=S_{A}+S_{B} \\
& x!\approx\left(\frac{x}{e}\right)^{x} \quad \ln (x!) \approx x \ln \left(\frac{x}{e}\right)=x \ln (x)-x \\
& E=h v=\frac{h c}{\lambda} \\
& \partial S=\left(\frac{\partial S}{\partial U}\right)_{V, N} \partial U+\left(\frac{\partial S}{\partial V}\right)_{U, N} \partial V+\sum_{j=1}^{M}\left(\frac{\partial S}{\partial N_{j}}\right)_{U, V, N_{i \neq j}} \partial N_{j} \\
& \frac{n_{B}}{n_{A}}=e^{-\frac{\varepsilon_{B}-\varepsilon_{A}}{k T}} \\
& \partial U=\left(\frac{\partial U}{\partial S}\right)_{V, N} \partial S+\left(\frac{\partial U}{\partial V}\right)_{S, N} \partial V+\sum_{j=1}^{M}\left(\frac{\partial U}{\partial N_{j}}\right)_{S, V, N_{i * i}} \partial N_{j} \\
& C_{p}=\left(\frac{\partial q}{\partial T}\right)_{P}=\left(\frac{\partial H}{\partial T}\right)_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P} \\
& \partial U=T \partial S-p \partial V+\sum_{j=1}^{M} \mu_{j} \partial N_{j} \\
& \partial S=\frac{1}{T} \partial U+\frac{p}{T} \partial V-\sum_{j=1}^{M} \frac{\mu_{j}}{T} \partial N_{j} \\
& \mu_{j}=\left(\frac{\partial U}{\partial n_{j}}\right)_{V, S, n_{i \neq j}}=\left(\frac{\partial G}{\partial n_{j}}\right)_{T, P, n_{i \neq j}}=\left(\frac{\partial H}{\partial n_{j}}\right)_{S, P, n_{i \neq j}}
\end{aligned}
$$

1. (15 points) Using what you know about chemistry, which of the following equations are true and which are false? You need not do any deriving here. Simply use common sense.

$T=\left(\frac{\partial S}{\partial U}\right)_{V, N}$	True	False
$p=-\left(\frac{\partial U}{\partial V}\right)_{S, N}$	True	False
$\mu_{j}=\left(\frac{\partial U}{\partial N_{j}}\right)_{S, V, N_{i+j}}$	True	False

Answer: False, True, True
\qquad
2. a) (20 points) Consider an NMR experiment in a field for which protons resonate (transitions from ground to excited state occur when subjected to radiowaves) at a frequency of 800 MHz . What is the ratio of excited to ground state population at room temperature $\left(25^{\circ} \mathrm{C}\right)$?

Use the Boltzmann equation:

$$
\begin{aligned}
& \Delta \varepsilon=h v=\left(6.626 \times 10^{-34} J S\right)\left(800 \times 10^{6} s^{-1}\right)=5.30 \times 10^{-25} \mathrm{~J} \\
& \frac{n_{\text {excited }}}{n_{\text {ground }}}=e^{-\frac{\Delta \varepsilon}{k T}}=e^{-\frac{5.30 \times 10^{-25} J}{\left(1.38 \times 10^{-23} J \mathrm{~K}^{-1}\right)(25+273) K}}=e^{-\left(1.29 \times 10^{-4}\right)}=0.99987
\end{aligned}
$$

Just for fun:

$$
\Delta E=N_{0} \Delta \varepsilon=5.30 \times 10^{-25} J\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)=0.32 \mathrm{~J} \mathrm{~mol}^{-1}=0.00032 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \text { Tiny!! }
$$

b) (15 points) What is the ratio for that same transition at at 1.0 K ?

$$
\text { at } 1 \mathrm{~K}: \frac{n_{\text {excited }}}{n_{\text {ground }}}=e^{-\frac{\Delta \varepsilon}{k T}}=e^{-\frac{5.30 \times 10^{-25} J}{\left(1.381 \times 10^{-23} J \mathrm{~K}^{-1}\right) / K}}=e^{-\left(3.84 \times 10^{-2}\right)}=0.962
$$

Even at 1 K , the levels are nearly equally populated!
\qquad
3. a) (15 points) Assuming $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ independent of temperature, derive, in terms of only $\Delta \mathrm{H}^{\circ}$ and/or $\Delta \mathrm{S}^{\circ}$ (and appropriate fundamental constants), an expression for:

$$
\frac{\partial \ln \left(K_{e q}\right)}{\partial\left(\frac{1}{T}\right)}=
$$

Answer:

$$
\ln K_{e q}=-\frac{\Delta G^{o}}{R T}=-\frac{\Delta H^{o}}{R T}+\frac{T \Delta S^{o}}{R T}=-\frac{\Delta H^{o}}{R}\left(\frac{1}{T}\right)+\frac{\Delta S^{o}}{R}
$$

$$
\begin{aligned}
& \frac{\partial \ln K_{e q}}{\partial\left(\frac{1}{T}\right)}=\frac{\partial}{\partial\left(\frac{1}{T}\right)}\left[-\frac{\Delta H^{o}}{R}\left(\frac{1}{T}\right)+\frac{\Delta S^{o}}{R}\right] \\
& \frac{\partial \ln K_{e q}}{\partial\left(\frac{1}{T}\right)}=-\frac{\Delta H^{o}}{R}
\end{aligned}
$$

b) (10 points) From simple extensions of the Boltzmann equation as we've seen it, we can derive for any reaction:

$$
K_{e q}=e^{-\frac{\Delta G^{\circ}}{R T}}
$$

Use the answer to part (a) to derive an expression for the temperature dependence of the equilibrium constant. In other words, derive $K_{T_{2}}$ in terms of $T_{1}, T_{2}, K_{T_{1}}, \Delta \mathrm{H}^{\circ}$, and/or $\Delta \mathrm{S}^{\circ}$ (and appropriate fundamental constants).

$$
\begin{aligned}
& \quad \partial \ln K_{e q}=-\frac{\Delta H^{o}}{R} \partial\left(\frac{1}{T}\right) \\
& \text { Answer: } \\
& \int_{T_{1}}^{T_{2}} \partial \ln K_{e q}=\int_{T_{1}}^{T_{2}}\left[-\frac{\Delta H^{o}}{R} \partial\left(\frac{1}{T}\right)\right]=-\frac{\Delta H^{o}}{R} \int_{T_{1}}^{T_{2}} \partial\left(\frac{1}{T}\right) \\
& \ln K_{T_{2}}-\ln K_{T_{1}}=-\frac{\Delta H^{o}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \ln K_{T_{2}}=\ln K_{T_{1}}-\frac{\Delta H^{o}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \\
& K_{T_{2}}=K_{T_{1}} e^{-\frac{\Delta H^{o}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)}
\end{aligned}
$$

\qquad
4. For the mixing of a two component system, n_{A} molecules of A and n_{B} molecules of B , the multiplicity of states is given by:

$$
W=\frac{N!}{n_{A}!n_{B}!} \quad N=n_{A}+n_{B}
$$

Remember also that the mole fraction for each is defined as: $\chi_{i}=\frac{n_{i}}{N}$
a) (15 points) Consider the mixing of two solutions. Derive the entropy of mixing in terms of χ_{A} and χ_{B} - Remembering that there are a large number of molecules in a real system, show that $\Delta S_{\text {mix }}=-k\left[n_{A} \ln \chi_{A}+n_{B} \ln \chi_{B}\right]$

$$
\begin{aligned}
& W=\frac{N!}{n_{A}!n_{B}!} \\
& \Delta S_{m i x}=k \ln W=k \ln \left(\frac{N!}{n_{A}!n_{B}!}\right) \\
& \Delta S_{m i x}=k\left[\ln (N!)-\ln \left(n_{A}!\right)-\ln \left(n_{B}!\right)\right] \\
& \text { Answer: } \Delta S_{m i x} \\
&=k\left[N \ln (N)-N-\left(n_{A} \ln \left(n_{A}\right)-n_{A}\right)-\left(n_{B} \ln \left(n_{B}\right)-n_{B}\right)\right] \\
& \Delta S_{m i x}=k\left[N \ln (N)-n_{A} \ln \left(n_{A}\right)-n_{B} \ln \left(n_{B}\right)-N+n_{A}+n_{B}\right] \\
& \Delta S_{m i x}=k\left[\left(n_{A}+n_{B}\right) \ln (N)-n_{A} \ln \left(n_{A}\right)-n_{B} \ln \left(n_{B}\right)+0\right] \\
& \Delta S_{m i x}=k\left[n_{A} \ln (N)+n_{B} \ln (N)-n_{A} \ln \left(n_{A}\right)-n_{B} \ln \left(n_{B}\right)\right] \\
& \Delta S_{m i x}=k\left[-n_{A} \ln \left(\frac{n_{A}}{N}\right)-n_{B} \ln \left(\frac{n_{B}}{N}\right)\right] \\
& \Delta S_{m i x}=-k\left[n_{A} \ln \chi_{A}+n_{B} \ln \chi_{B}\right]
\end{aligned}
$$

b) (10 points) Finally, express $\Delta S_{m i x}$ in terms of N and χ_{A} only (you can use the result from part (a) that is already given to you)

$$
1=\frac{N}{N}=\frac{n_{A}+n_{B}}{N}=\frac{n_{A}}{N}+\frac{n_{B}}{N}=\chi_{A}+\chi_{B}=1
$$

Answer: $\chi_{B}=1-\chi_{A}$

$$
\Delta S_{m i x}=-k\left[n_{A} \ln \chi_{A}+n_{B} \ln \chi_{B}\right]
$$

$$
\Delta S_{\text {mix }}=-k N\left[\frac{n_{A}}{N} \ln \chi_{A}+\frac{n_{B}}{N} \ln \chi_{B}\right]=-k N\left[\chi_{A} \ln \chi_{A}+\chi_{B} \ln \chi_{B}\right]
$$

$$
\Delta S_{\text {mix }}=-k N\left[\chi_{A} \ln \chi_{A}+\left(1-\chi_{A}\right) \ln \left(1-\chi_{A}\right)\right]
$$

