1. A 1.28 mol sample of Ar gas is confined in a

 31.5 liter container at 26.5 C .If 1.28 mol of He gas is added holding the volume and temperature constant, the average kinetic energy of the total system will:

1. decrease
2. remain the same
3. increase
4. not enough information to answer the question

2. In the situation above, the pressure will increase because:

1. As the number of molecule-wall collisions increases, the force per collision increases.
2. With more molecules per unit volume, the molecules hit the walls of the container more often.
3. With more molecules in the container, the molecules have higher average speeds.
4. With higher average speeds, on average the molecules hit the walls of the container with more force.
5. None of the Above
6. A 0.900 mol sample of H 2 gas is confined in a 22.4 liter container at 29.8 C .

If 0.900 mol of N_{2} is substituted for the 0.900 mol of H_{2}, holding the volume and temperature constant, the average kinetic energy will:

1. increase
2. decrease
3. remain the same
4. not enough information to answer the question
5. A 1.96 mol sample of CO_{2} gas is confined in a 49.1 liter container at 32.3 C . If the temperature of the gas sample is increased to 55.0 C , holding the volume constant, the pressure will increase because:

Choose all that apply.

1. With higher average speeds, on average the molecules hit the walls of the container with more force.
2. With lower average speeds, the molecules hit the walls of the container less often.
3. As the average speed increases, the number of molecule-wall collisions decreases.
4. None of the Above
5. Mixing $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CuCl}_{2}$ yields the following net ionic equation:

$$
\text { 1. } \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CuCl}_{2}(\mathrm{~s})==\mathrm{CuCO}_{3}(\mathrm{~s})+
$$

$2 \mathrm{NaCl}(\mathrm{s})$

2. $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
$==\mathrm{CuCO}_{3}(\mathrm{~s})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
3. $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}$

$$
(\mathrm{aq})==\mathrm{CuCO}_{3}(\mathrm{~s})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

4. $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{Cu}^{2+}(\mathrm{aq})==\mathrm{CuCO}_{3}(\mathrm{~s})$
5. A weak acid is a compound which when placed in water:
6. leads to production of some OH^{-}
7. dissociates completely to produce H^{+}
8. dissociates slightly to produce H^{+}
9. is insoluble
10. When acids and bases are mixed together they:
11. explode
12. precipitate
13. generate water
14. don't mix well
15. Reactions in water which produce gases tend to:
16. be unfavorable
17. be favorable
18. be exothermic
19. be rare

Why??
9. The redox state of $\mathbf{F e}$ in FeCO 3 is:

1. -1
2. 0
3. +1
4. +2
5. +3
6. In the reaction: $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s})==2 \mathrm{Fe}$ (l) $+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$, the oxidizing agent is:
7. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
8. Fe
9. $\mathrm{Al}_{2} \mathrm{O}_{3}$
10. $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$
11. $\mathrm{Al}_{2} \mathrm{O}_{3}$
12. none of the above
13. Which solution has the highest concentration of H^{+}:
14. $\mathrm{pH}=3$
15. $\mathrm{pH}=5$
16. $\mathrm{pH}=7$
17. $\mathrm{pH}=9$
18. $\mathrm{pH}=12$
19. Which set below has examples of (only) kinetic energy:
20. thermal energy, mechanical energy, electric energy
21. thermal energy, bond energy, electrostatic energy
22. gravitational energy, bond energy, electrostatic energy
23. gravitational energy, thermal energy, electric energy
24. Which set below has examples of (only) potential energy:
25. thermal energy, mechanical energy, electric energy
26. thermal energy, bond energy, electrostatic energy
27. gravitational energy, bond energy,
electrostatic energy
28. gravitational energy, thermal energy, electric energy
29. In an exothermic process:
30. work is performed on the surroundings
31. heat is transferred to the surroundings
32. work is performed on the system
33. heat is transferred to the system

15. Specific heat capacity refers to:

1. the heat given off per mole of reaction
2. the heat given off per gram of reaction
3. the heat required to raise the temperature of one gram of a substance by 1 K
4. the heat required to raise the temperature of one mole of a substance by 1 K
5. The term state refers to:
6. the system being studied - not the surroundings
7. liquid, gas, or solid
8. animal, vegetable, or mineral
9. initial conditions
10. final conditions
11. The heat of fusion is:
12. the energy required to fuse 1 mole of two molecules together
13. the energy required to convert, at its melting point, 1 mole of a substance in the liquid state into the solid state
14. the energy required to convert, at its melting point, 1 mole of a substance in the solid state
15. Change in internal energy is best described as:
16. $\Delta \mathrm{H}$
17. q
18. w
19. $q+w$
20. $\Delta \mathrm{G}$
21. A positive value of ΔE means that:
22. heat is tranferred to the surroundings
23. heat is transfered to the system
24. energy in the form of heat and/or work is transferred to the surroundings
25. energy in the form of heat and/or work is transferred to the system
26. When one pushes down on a bicycle pump connected to a tire at 80 psi :
27. Work is performed on the pump/tire system
28. Work is performed by the pump/tire system
29. No net work is performed
