\qquad

* Enter your answers on the bubble sheet. Turn in all sheets. *

This exam is composed of $\mathbf{2 5}$ questions on 4 pages (in addition to this cover page).
Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you and/or that require calculations.

As discussed in the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

I hereby state that all answers on this exam are my own and that I have neither gained unfairly from others nor have I assisted others in obtaining an unfair advantage on this exam.

Signature

$E=h v=\frac{h c}{\lambda}$	Some common ions:		$h=6.626 \times 10^{-34} J s$
$R_{H} h c$	$\mathrm{PO}_{4}{ }^{3-}$	$\mathrm{CN}^{-} \quad \mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	$c=2.9998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$E_{n}^{H-\text { atom }}=-\frac{\Lambda_{H} n c}{n^{2}}$	NO_{2}^{-}	$\mathrm{NO}_{3}{ }^{-} \quad \mathrm{CO}_{3}{ }^{2-}$	$N=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{SO}_{4}{ }^{2-}$	$R_{H}=1.097 \times 10^{7} \mathrm{~m}^{-1}$

1A	2A	3B	4B	5B	6B	7B	8B	8B	8 B	1B	2 B	3A	4 A	5A	6A	7A	8A
$\begin{array}{\|l\|} \hline 1 \\ \mathbf{H} \\ 1.008 \\ \hline \end{array}$																	$\stackrel{2}{\mathrm{He}}$ 4.003
$\begin{aligned} & \mathbf{3} \\ & \mathbf{L i} \end{aligned}$	$\begin{array}{\|l\|} \hline 4 \\ \mathbf{B e} \\ 9.012 \\ \hline \end{array}$											$\begin{aligned} & \hline 5 \\ & \text { B } \end{aligned}$	${ }^{6}$ C 12.01	$\begin{array}{\|c} \hline 7 \\ \mathrm{~N} \\ \text { 14.01 } \end{array}$	$\begin{aligned} & \hline 8 \\ & \mathbf{0} \end{aligned}$	$\begin{gathered} 9 \\ \mathbf{F} \\ \mathbf{1 9 . 0 0} \end{gathered}$	$\begin{aligned} & 10 \\ & \mathbf{N e} \end{aligned}$ 20.18
$\begin{aligned} & 11 \\ & \mathbf{N a} \\ & \text { 22.99 } \\ & \hline \end{aligned}$	$\stackrel{12}{\mathbf{M g}}$											13 Al 26.98	$\begin{aligned} & 14 \\ & \mathbf{S i} \\ & 28.09 \end{aligned}$	$\begin{array}{\|c} \hline 15 \\ \mathbf{P} \\ 30.97 \\ \hline \end{array}$	$\begin{aligned} & \hline 16 \\ & \mathbf{S} \\ & 32.07 \end{aligned}$	$\begin{aligned} & 17 \\ & \mathbf{C l} \\ & 35.45 \end{aligned}$	$\begin{aligned} & 18 \\ & \mathbf{A r} \\ & 39.95 \\ & \hline \end{aligned}$
19 \mathbf{K} 39.10	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 40.08 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 21 \\ \text { Sc } \\ \hline 44.96 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 22 \\ \mathrm{Ti} \\ 47.90 \end{array}$	$\begin{array}{\|c\|} \hline 23 \\ \mathbf{V} \\ 50.94 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 24 \\ \mathbf{C r} \\ 52.00 \\ \hline \end{array}$	$\begin{aligned} & \hline 25 \\ & \mathbf{M n} \\ & 54.94 \\ & \hline \end{aligned}$	26 Fe 55.85	$\begin{aligned} & \begin{array}{l} 27 \\ \text { Co } \\ 58.93 \end{array} \end{aligned}$	28	$\begin{aligned} & \hline 29 \\ & \mathbf{C u} \\ & 6.55 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 30 \\ \mathbf{Z n} \\ 65.39 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 31 \\ & \mathbf{G a} \\ & 69.72 \end{aligned}$	$\begin{array}{\|l\|} \hline 32 \\ \mathbf{G e} \\ \hline 72.61 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 33 \\ \text { As } \\ \text { A4.92 } \\ \hline \end{array}$	34 Se 78.96	$\begin{gathered} { }^{35} \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{aligned} & \begin{array}{l} 36 \\ \mathbf{K r} \\ 83.80 \end{array} \\ & \hline \end{aligned}$
$\begin{aligned} & \hline 37 \\ & \mathbf{R} \mathbf{R} \\ & \text { 85.47 } \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} 38 \\ \mathbf{S r} \\ 87.62 \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 39 \\ \mathbf{Y} \\ 88.91 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline{ }^{40} \\ \mathbf{Z r} \\ 99.22 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 41 \\ \mathbf{N b} \\ \hline 92.91 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 42 \\ \text { Mo } \\ \hline 95.94 \\ \hline \end{array}$	$\begin{aligned} & \hline{ }^{43} \\ & \text { Tc } \end{aligned}$ (99)	$\begin{aligned} & \stackrel{44}{4}_{\mathrm{Ru}} \end{aligned}$ 101.1	$\begin{aligned} & \hline 45 \\ & \mathbf{R h} \\ & 102.9 \\ & \hline \end{aligned}$	46	$\begin{aligned} & 47 \\ & \mathbf{A g} \\ & 107.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 48 \\ \mathbf{C d} \end{array}$ 112.4	$\begin{aligned} & \hline 49 \\ & \text { In } \\ & 114.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 50 } \\ & \text { Sn } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline 51 \\ \mathbf{S b} \\ \hline 121.8 \\ \hline \end{array}$	52 Te \qquad	$\begin{gathered} 53 \\ \text { I } \\ \text { 126.9 } \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ \hline 131.3 \\ \hline \end{gathered}$
$\stackrel{\stackrel{55}{55}}{\stackrel{5}{\mathbf{C s}}}$	$\begin{aligned} & { }_{56}^{56} \\ & \text { Ba } \end{aligned}$ ${ }^{137.3}$	$\begin{array}{\|l\|l\|} \hline 57 \\ \text { La } \\ 138.9 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 72 \\ \mathbf{H f} \\ 178.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 73 \\ \mathrm{Ta} \\ 181.0 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 74 \\ \mathbf{W} \\ \hline 183.8 \\ \hline \end{array}$	${ }_{7}^{75}$ Re 186.2	76 Os 190.2	Ir 192.2	$\begin{aligned} & \hline 78 \\ & \mathbf{P t} \\ & 195.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 79 \\ & \mathbf{A u} \\ & 197.0 \end{aligned}$	80 Hg 200.6	$\begin{aligned} & \hline \mathbf{8 1} \\ & \mathbf{T l} \\ & 204.4 \end{aligned}$	$\begin{array}{\|l} 82 \\ \mathbf{P b} \end{array}$ $\begin{array}{\|l\|l\|} \hline 207.2 \\ \hline \end{array}$	${ }_{8}^{83}$ 209.0	$\begin{aligned} & 84 \\ & \mathbf{P 0} \end{aligned}$ (209)	85 At (210)	86 Rn (222)
$\stackrel{87}{\mathrm{Fr}}$ (223)	88 Ra 226.0	89 Ac 227.0	104 Unq (261)	$\begin{array}{\|l\|} \hline 105 \\ \text { Unp } \end{array}$ (262)	106 Unh (263)	$\begin{aligned} & 107 \\ & \text { Uns } \end{aligned}$ (262)	$\begin{aligned} & \hline 108 \\ & \text { Uno } \end{aligned}$ (265)	$\begin{aligned} & 109 \\ & \text { Une } \end{aligned}$ (266)									

Identify the choice that best completes the statement or answers the question.

1. Which element is represented by: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{5}$
a) I
b) Po
c) Te
d) At
e) Br
2. The correct spectroscopic notation for phosphorous ion $\left(\mathrm{P}^{2-}\right)$ is:
a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
b) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$
c) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
e) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
3. How many valence electrons are in the P atom?
a) 4
b) 6
C) 5
d) 10
e) 0

$$
1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2} 3 p^{3} \quad n=3 \text { is the valence level. It has } 5 \text { valence electrons }
$$

4. Which of the following has the shortest bond length?
a) SiH_{4}
b) PH_{3}
c) HCl
d) AlH_{3}
e) $\mathrm{H}_{2} \mathrm{~S}$

Cl is the smallest of $\mathrm{Al}, \mathrm{Si}, \mathrm{P}, \mathrm{S}$, and Cl
5. Consider the molecule $\mathrm{AsO}_{4}{ }^{\mathrm{X}}$, where x is the charge on the molecule. Which value of x (the net charge on the molecule) yields the most stable molecule? (Hint: draw Lewis structures to figure this one out)
a) 0
b) -1
c) -2
d) +2
e) -3
6. For the $\mathrm{AsO}_{4}{ }^{\mathrm{X}}$ molecule, how many equal-energy resonance structures can you draw?
a) 3
b) 6
c) 4
d) 1
e) 2

One can construct at least 3 different views of this molecule
1)

2)

3)

The top set of 4 resonance structures is best, in that the negative charges are localized on 0 , which can stabilize charge the most. The second structure is another valid resonance structure, but is higher in energy than the first, as there is more (unnecessary) separation of charge. The last set of structures is still higher in energy in that negative charge is localized on As, which has lower electronegativity than O. So set (1) is the lowest energy set of equal energy resonance structures. Everyone got full credit for any answer.
7. Consider the molecule ClF_{5} How many lone pairs are on the central atom?
a) 0
b) 1
c) 2
d) 3
e) 4
8. Consider the molecule ClF_{5} What is the electron pair geometry?
a) octahedral
c) trigonal planar
e) tetrahedral
b) linear
d) trigonal bipyramidal
9. Consider the molecule ClF_{5} What is the molecular geometry?
a) trigonal planar
c) trigonal bipyramidal
e) tetrahedral
b) trigonal bipyramidal
d) square pyramidal
10. The CO bond in the molecule $\mathrm{CH}_{3} \mathrm{OH}$ is best described as a :
a) single bond
d) triple bond
b) ionic bond
e) the molecule doesn't exist
c) double bond
11. Which of the following has the highest effective nuclear charge as seen by its outermost valence electrons?
a) As
b) Si
c) N
d) S
e) F
12. Which of the following has the lowest electron affinity?
a) S
b) Si
c) Al
d) Cl
e) P
13. For the $\mathrm{SO}_{3}{ }^{2-}$ molecule, how many equal-energy resonance structures can you draw?
a) 6
b) 1
c) 3
d) 0
e) 2

There are 3 equal energy resonance structures for structure 1, while there is only one resonance structure for structure 2. Structure one should be lower in energy, based on the fact that charge is minimally separated.

This question is harder than I intended. Consequently I gave full credit for any answer (but note that I may try to dissect the concepts here and come up with a better question in the future!)
14. Which of the following correctly compares atomic radii?
a) O $<\mathrm{N}<\mathrm{C}<\mathrm{Be}<\mathrm{Ne}$
d) $\mathrm{Ne}<\mathrm{O}<\mathrm{N}<\mathrm{C}<\mathrm{Be}$
b) $\mathrm{Li}<$ B $<$ C $<\mathrm{N}<\mathrm{Ne}$
e) none of the above
c) $\mathrm{Ne}<\mathrm{Li}<$ B $<\mathrm{C}<\mathrm{N}$
15. Which compound below does not exist?
a) CaF_{4}
b) BeF_{2}
c) KCl
d) MgO
e) BCl_{3}
16. Draw the Lewis structure for $\mathbf{N O}_{\mathbf{2}}{ }^{-}$For any one of the most stable resonace forms, your resulting molecule has a total of:
a) one double and one triple bond
d) two single bonds
b) one single and one double bond
e) two triple bonds
c) two double bonds
17. Draw a lowest energy Lewis structure for $\mathbf{N O}_{2}{ }^{-}$In this structure, the formal charge on N is
a) -2
b) -1
c) 0
d) +1
e) +2
18. The molecule carbon tetrachloride CCl_{4} has what molecular structure?
a) tetrahedral
c) bent
e) trigonal bipyramidal
b) trigonal planar
d) octahedral
$[\mathrm{O}-\mathrm{C} \equiv \mathrm{N} \leftrightarrow \mathrm{O}=\mathrm{C}=\mathrm{N} \leftrightarrow \mathrm{O} \equiv \mathrm{C}-\mathrm{N}]^{-}$
19.
(A)
(B)
(C)

Which resonance form of OCN^{-}contributes most to the real molecule?
a) A
c) C
e) all same
b) B
d) A and C same

(A)
(B)
(C)

Choice C is bad in that it places a double negative charge on N and a positive charge on 0 . This distribution is the opposite of what we'd want based on electronegativity.
20. How many lone pairs of electrons are assigned to the sulfur atom in $\mathrm{H}_{2} \mathrm{~S}$?
a) 0
b) 1
c) 2
d) 3
e) 4
21. Which of the following are possible Lewis structures for $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$?

(1)

(2)

(3)
a) 1
c) 3
e) 1, 2, and 3
22. Which of the following are resonance structures for nitrite ion, $\mathrm{NO}_{2}{ }^{-}$?

(1)

(2)

(3)

(4)
a) 1 and 2
c) 3 and 4
e) 2, 3, and 4
b) 2 and 4
d) 1, 2, and 3
23. Electronegativity is a measure of
a) the charge on a polyatomic cation.
b) the charge on an polyatomic anion.
c) the ability of a substance to conduct electricity.
d) the oxidation number of an atom in a molecule or polyatomic anion.
e) the ability of an atom in a molecule to attract electrons to itself.
24. Three possible structures of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ are shown below. Which of these molecules are polar?

(1)

(2)

(3)
a) 1 only
b) 2 only
c) 1 and 3
d) 3 only
e) 2 and 3
25. What course is this?
a) Math 3.14159
c) Chem 111
e) Spy 007
b) Sports 01
d) Bio 152
\qquad

MULTIPLE CHOICE

1. ANS: E
2. ANS: D

PTS: 1
3. ANS: C
$1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2} 3 p^{3} \quad n=3$ is the valence level. It has 5 valence electrons
PTS: 1
4. ANS: C PTS: 1
5. ANS: E PTS: 1
6. ANS: C PTS: 1
7. ANS: B PTS: 1
8. ANS: A PTS: 1
9. ANS: D PTS: 1
10. ANS: A

From OWL units 9-1d and 9-2b. See Study Questions 13-14, Chapter 9 of K\&T.
PTS: 1
11. ANS: E PTS: 1
12. ANS: C PTS: 1
13. ANS: B PTS: 1
14. ANS: D PTS: 1
15. ANS: A PTS: 1
16. ANS: B PTS: 1
17. ANS: C PTS: 1
18. ANS: A PTS: 1
19. ANS: A PTS: 1
20. ANS: C PTS: 1
21. ANS: D PTS: 1
22. ANS: A PTS: 1
23. ANS: E PTS: 1
24. ANS: C PTS: 1
25. ANS: C PTS: 1

TOP: 8.2 Covalent Bonding and Lewis Structures
TOP: 8.2 Covalent Bonding and Lewis Structures
TOP: 8.4 Resonance
TOP: 8.7 Bond Polarity and Electronegativity
TOP: 8.8 Bond and Molecular Polarity

