\qquad Answer Key - Exam Version A

* Enter your answers on the bubble sheet. Turn in all sheets. *

This exam is composed of $\mathbf{2 5}$ questions on 7 pages total.
Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you and/or that require calculations.

As discussed in the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

I hereby state that all answers on this exam are my own and that I have neither gained unfairly from others nor have I assisted others in obtaining an unfair advantage on this exam.

Signature

$E=h v=\frac{h c}{\lambda}$	Some common ions:		$h=6.626 \times 10^{-34} \mathrm{Js}$	
$E_{n}^{H-\text { atom }}=-\frac{R_{H} h c}{n^{2}}$	$\mathrm{PO}_{4}{ }^{3-}$	CN^{-}	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	$c=2.9998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	$\mathrm{NO}_{2}{ }^{-}$	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$	$N=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{SO}_{4}{ }^{2-}$	$R_{H}=1.097 \times 10^{7} \mathrm{~m}^{-1}$		

1A	2 A	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	3A	4A	5A	6A	7A	8A
$\begin{array}{\|l\|} \hline 1 \\ \mathbf{H} \\ 1.008 \\ \hline \end{array}$																	He 4.003
$\begin{array}{\|l\|} \hline \mathbf{3} \\ \mathbf{L i} \\ 6.939 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Be } \\ & \hline \end{aligned}$											$\begin{array}{\|l\|} \hline 5 \\ \text { B } \end{array}$ $\begin{gathered} 10.81 \\ \hline \end{gathered}$	${ }^{6} \mathrm{C}$ 12.01	${ }^{7} \mathbf{N}$ 14.01	$\begin{gathered} \hline 8 \\ \mathbf{O} \\ 16.00 \end{gathered}$	$\stackrel{9}{\mathbf{F}}$ 19.00	10 Ne 20.18
$\begin{array}{\|l\|} \hline 11 \\ \mathrm{Na} \\ \hline 22,99 \\ \hline \end{array}$	$\begin{aligned} & { }^{12} \\ & \mathbf{M g} \end{aligned}$ 24.31											$\begin{array}{\|l\|} \hline \mathbf{1 3} \\ \text { Al } \\ 26.98 \\ \hline \end{array}$	$\begin{aligned} & \mathbf{1 4} \\ & \mathbf{S i} \\ & 28.09 \end{aligned}$	15 \mathbf{P} 30.97	$\begin{aligned} & \hline 16 \\ & \mathbf{S} \\ & 32.07 \end{aligned}$	$\begin{aligned} & 17 \\ & \mathbf{C l} \\ & 35.45 \end{aligned}$	$\begin{aligned} & \hline \mathbf{1 8} \\ & \mathbf{A r} \\ & \text { 39.95 } \end{aligned}$
$\begin{gathered} 19 \\ \mathbf{1 9} \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{aligned} & 20 \\ & \mathbf{C a} \\ & 40.08 \\ & 4 \end{aligned}$	$\begin{aligned} & { }_{21}^{21} \\ & \mathbf{S c} \\ & 44.96 \end{aligned}$	$\begin{aligned} & 22 \\ & \mathrm{Ti} \end{aligned}$	$\begin{aligned} & { }_{23}^{23} \\ & \mathbf{V} \\ & 50.94 \\ & \hline \end{aligned}$	$\begin{aligned} & { }_{2}^{24} \\ & \mathbf{C r} \\ & 52.00 \end{aligned}$		${ }^{26}$ 55.85	$\begin{array}{\|l\|} \hline 27 \\ \hline \mathbf{C o} \\ 58.33 \\ \hline \end{array}$	$\begin{aligned} & \hline 28 \\ & \mathbf{N i} \\ & 58.71 \end{aligned}$	$\begin{aligned} & { }^{29} \\ & \mathbf{C u} \\ & 63.55 \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 30 \\ \mathbf{Z n} \\ 65.39 \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 31 \\ \mathbf{G a} \\ 69.72 \\ \hline \end{array}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.61 \end{gathered}$	$\begin{aligned} & 33 \\ & \text { As } \\ & 74.92 \end{aligned}$	$\begin{aligned} & 34 \\ & \mathbf{S e} \\ & \text { Se } \\ & 78.96 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 35 \\ \mathbf{B r} \\ 79.90 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \\ & \mathbf{K r} \\ & 83.80 \end{aligned}$
$\begin{array}{\|l\|} \hline 37 \\ \text { Rb } \end{array}$ 85.47	38 Sr 87.62	$\begin{gathered} \begin{array}{c} 39 \\ \mathbf{Y} \\ 88.91 \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & { }^{40} \\ & \mathbf{Z r} \\ & 91.22 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 41 \\ \mathbf{N b} \\ 92.91 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} 42 \\ \mathbf{M o} \end{array} \end{aligned}$ 95.94	$\begin{aligned} & \hline \begin{array}{l} 43 \\ \mathbf{T c} \\ (99) \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 44 \\ & \mathbf{R u} \end{aligned}$ 101.1	$\begin{array}{\|l\|} \hline \text { 45 } \\ \text { Rh } \\ 1029 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 \\ & \text { Pd } \end{aligned}$ 106.4	$\begin{aligned} & 47 \\ & \mathbf{A g} \\ & \text { Ag } \\ & \hline 107.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 48 \\ \mathrm{Cd} \end{array}$ 112.4	In 114.8	$\begin{aligned} & { }_{\mathbf{5 0}}^{\mathbf{S n}} \\ & \mathbf{S n} \\ & \mathbf{1 1 8 . 7} \end{aligned}$	51 Sb 121.8	52 Te 127.6	$\begin{gathered} 53 \\ \text { I } \\ 126.9 \end{gathered}$	$\begin{aligned} & 54 \\ & \mathbf{X e} \\ & \\ & \hline 131.3 \end{aligned}$
$\begin{array}{\|l\|} \hline 55 \\ \text { 5s } \\ \text { Cs } \\ \hline 132.9 \\ \hline \end{array}$	56 Ba 137.3	$\begin{array}{\|l} 57 \\ \mathbf{L a} \\ 138.9 \\ \hline \end{array}$	${ }^{72} \mathbf{H f}$ 178.5		$\begin{gathered} \hline 74 \\ \mathbf{W} \end{gathered}$ $\begin{array}{\|l\|l\|l} \hline 18.8 \end{array}$	75 Re 186.2	$\stackrel{76}{\mathrm{Os}}$ 190.2	$\begin{array}{\|l\|} \hline 77 \\ \mathbf{I r} \\ 192.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 78 \\ \mathbf{P t} \\ 195.1 \\ \hline \end{array}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 197.0 \\ \hline \end{gathered}$	$\stackrel{80}{\mathrm{Hg}}$ 200.6	$\begin{array}{\|l\|l} \hline 81 \\ \mathbf{T l} \\ 204.4 \\ \hline \end{array}$	$\stackrel{82}{\mathbf{P b}}$ 207.2	${ }_{8}^{83}$ 209.0	$\begin{aligned} & \left.\begin{array}{l} 84 \\ \text { Po } \\ \text { (209) } \\ (\end{array}\right) \end{aligned}$	85 At (210)	86 $\mathbf{R n}$ (222)
$\begin{array}{\|l} \hline 87 \\ \mathbf{F r} \\ (\mathbf{2 2 3}) \end{array}$	88 Ra 226.0	89 Ac 227.0	$\begin{aligned} & \hline 104 \\ & \text { Unq } \\ & \text { (261) } \\ & \hline \end{aligned}$	105 Unp (262)	$\begin{array}{\|l\|l} \hline 106 \\ \text { Unh } \\ (263) \\ \hline \end{array}$	$\begin{array}{\|l} 107 \\ \text { Uns } \\ (262) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 108 \\ \text { Uno } \\ \hline(265) \\ \hline \end{array}$	$\begin{aligned} & \hline 109 \\ & \text { Une } \end{aligned}$ $\begin{array}{\|l\|l} \hline(266) \\ \hline \end{array}$	a								

Solubility Rules for some ionic compounds in water

Soluble Ionic Compounds

1. All sodium $\left(\mathrm{Na}^{+}\right)$, potassium $\left(\mathrm{K}^{+}\right)$, and ammonium $\left(\mathrm{NH}_{4}^{+}\right)$salts are SOLUBLE.
2. All nitrate $\left(\mathrm{NO}_{3}^{-}\right)$, acetate $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right)$, chlorate $\left(\mathrm{ClO}_{3}^{-}\right)$, and perchlorate $\left(\mathrm{ClO}_{4}^{-}\right)$salts are SOLUBLE.
3. All chloride $\left(\mathrm{Cl}^{-}\right)$, bromide $\left(\mathrm{Br}^{-}\right)$, and iodide $\left(\mathrm{I}^{-}\right)$salts are SOLUBLE -- EXCEPT those also containing: lead, silver, or mercury (I) $\left(\mathrm{Pb}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}^{2+}\right)$ which are NOT soluble.
4. All sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ salts are SOLUBLE - - EXCEPT those also containing: calcium, silver, mercury (I), strontium, barium, or lead $\left(\mathrm{Ca}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}\right)$ which are NOT soluble.

Not Soluble Ionic Compounds

5. Hydroxide $\left(\mathrm{OH}^{-}\right)$and oxide $\left(\mathrm{O}^{2-}\right)$ compounds are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or barium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ba}^{2+}\right)$ which are soluble.
6. Sulfide (S^{2-}) salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, ammonium, or barium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}\right.$, $\mathrm{NH}_{4}{ }^{+}, \mathrm{Ba}^{2+}$) which are soluble.
7. Carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or ammonium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}\right)$, which are soluble.

Identify the choice that best completes the statement or answers the question.

1. What is the hybridization of the nitrogen atom in NCl_{3} ?
a. $s p$
b. $s p^{2}$
c. $s p^{3}$
d. $s p^{3} d$
e. $s p^{3} d^{2}$
ANS: C TOP: 9.2 Valence Bond Theory
2. For which of the following molecules and ions does the central atom have $s p$ hybridization: $\mathrm{NO}_{2}^{+}, \mathrm{O}_{3}$, and $\mathrm{I}_{3}{ }^{-}$?
a. $\mathrm{NO}_{2}{ }^{+}$only
b. O_{3} only
c. $\mathrm{I}_{3}{ }^{-}$only
d. O_{3} and $\mathrm{I}_{3}{ }^{-}$
e. $\mathrm{I}_{3}{ }^{-}$and $\mathrm{NO}_{2}{ }^{+}$

ANS: A TOP: 9.2 Valence Bond Theory
3. What is the molecular geometry around a central atom that is $s p^{3} d^{2}$ hybridized and has one lone pair of electrons?
a. tetrahedral
d. square-pyramidal
b. trigonal-bipyramidal
e. see-saw
c. square-planar

ANS: D TOP: 9.2 Valence Bond Theory

4. Which of the following characteristics apply to SO_{2} ?
5. polar bonds
6. nonpolar molecule
7. linear molecular shape
8. $s p$ hybridized
a. 1 only
d. 1, 2, and 3
b. 1 and 2
e. $1,2,3$, and 4
c. 3 and 4

ANS: A TOP: 9.2 Valence Bond Theory
\qquad Answer Key - Exam Version A
5. A molecular orbital that decreases the electron density between two nuclei is said to be .
a. hybridized
c. antibonding
e. nonpolar
b. bonding
d. pi-bonding

ANS: C TOP: 9.3 Molecular Orbital Theory
6. Which molecule will have the following valence molecular orbital level energy diagram?

a. Li_{2}
b. Be_{2}
c. B_{2}
d. C_{2}
e. N_{2}

ANS: E TOP: 9.3 Molecular Orbital Theory
7.

Which picture best represents the electronic distribution in orbital "h"?
a.

c.

e.

b.

ANS: B
d.

8. The diatomic AB above is CN^{-}. What is the overall bond order?
a. 1.0
b. 1.5
c. 2.0
d. 2.5
e. 3.0

ANS: E
\qquad Answer Key - Exam Version A
9. The picture at right depicts which type of orbital hybridization?
a. sp
b. sp^{2}
c. sp^{3}
d. $\mathrm{sp}^{3} \mathrm{~d}$
e. $\mathrm{sp}^{3} \mathrm{~d}^{2}$

ANS: C
10. In the molecule 2-pentenoic acid, which most closely measures the $\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{OH}$ angle?

a. 90°
b. 109°
c. 120°
d. 145°
e. 180°

ANS: C
11. A central atom in a molecule has a trigonal bipyramidal electron pair geometry. What is the orbital hybridization on that atom?
a. sp
b. sp^{2}
c. sp^{3}
d. sp^{4}
e. $s p^{3} d$

ANS: E
12. An alcohol will initially react with the molecule below at which position?

ANS: D
13. Which carbon center below is most deficient in electrons?

ANS: D
\qquad Answer Key - Exam Version A
14. Which of the following statements is/are correct?

1. All ionic compounds that are soluble in water are electrolytes.
2. All ionic compounds dissolve in water.
3. Molecular compounds are never soluble in water.
a. 1 only
b. 2 only
c. 3 only
d. 1 and 2
e. 2 and 3

ANS: A TOP: 3.5 lons and Molecules in Aqueous Solutions
15. Which one of the following compounds is a nonelectrolyte when dissolved in water?
a. HCl
c. Cl_{2}
e. KI
b. MgBr_{2}
d. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$

ANS: C TOP: 3.5 lons and Molecules in Aqueous Solutions
16. A precipitate will form when aqueous $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is added to an aqueous solution of
a. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
b. CaBr_{2}
c. $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$
d. $\mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}$
e. NaNO_{3}

ANS: B TOP: 3.6 Precipitation Reactions

17. What is the net ionic equation for the reaction of aqueous calcium acetate and aqueous sodium carbonate?
a. $\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}(\mathrm{~s})$
b. $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{CO}_{2}(\mathrm{aq})$
c. $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{CO}_{2}$ (s)
d. $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
e. $\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq}) \rightarrow \mathrm{CaNa}_{2}(\mathrm{~s})$

ANS: D TOP: 3.6 Precipitation Reactions

18. Write a balanced net ionic equation for the reaction of barium carbonate and aqueous hydrochloric acid.
a. $\mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
b. $\mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}\left({ }^{(T)}\right)^{\prime}$
c. $\mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
d. $\mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{~s})$
e. $\mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{BaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

ANS: B TOP: 3.8 Gas-Forming Reactions

19. Which molecule in the reaction below is the reducing agent?
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. $\mathrm{C}_{2} \mathrm{H}_{6}$
c. O_{2} and CO_{2}
e. None
b. O_{2}
d. CO_{2}

ANS: A TOP: 3.9 Oxidation-Reduction Reactions
\qquad Answer Key - Exam Version A
20. What is the oxidation number of iodine in potassium periodate, KIO_{4} ?
a. -1
b. 0
c. +3
d. +5
e. +7

ANS: E TOP: 3.9 Oxidation-Reduction Reactions

21. Consider the reaction

$$
\mathrm{FeCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

This reaction is best classified as
a. oxidation-reduction
d. acid-base
b. gas-evolving
e. gas-evolving and acid-base
c. precipitation

ANS: E
22. Alka seltzer is a combination of citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$, and $\mathrm{NaHCO}_{3}{ }^{-}$. They react in your glass to form $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}, \mathrm{H}_{2} \mathrm{O}$, and CO .

What is the oxidation number of the carbon pointed to by the arrow?
a. -2
b. 0
c. 1
d. 2
e. 4

ANS: C
23. Mixing $\mathbf{B a}\left(\mathbf{N O}_{\mathbf{3}}\right)_{\mathbf{2}}$ with $\mathbf{C a C l}_{\mathbf{2}}$ in water leads to precipitation of
a. a NO_{3}^{-}salt
d. nothing precipitates
b. $\mathrm{A} \mathrm{Cl}^{-}$salt
e. everything precipitates
c. aCa^{2+} salt

ANS: D
24. What is the oxidation number of antimony in $\mathrm{Sb}_{2} \mathrm{O}_{5}$?
a. +2
b. -2
c. +5
d. -5
e. 0

ANS: C
25. What course is this?
a) Chem 111
c) Bio 152
e) Election 08
b) Sports 01
d) Math 3.14159

ANS: A

