\qquad Answer Key - Exam Version E

* Enter your answers on the bubble sheet. Turn in all sheets. *

This exam is composed of $\mathbf{2 5}$ questions on 7 pages total.
Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you and/or that require calculations.

As discussed in the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

I hereby state that all answers on this exam are my own and that I have neither gained unfairly from others nor have I assisted others in obtaining an unfair advantage on this exam.

Signature

$E=h v=\frac{h c}{\lambda}$	Some common ions:		$h=6.626 \times 10^{-34} \mathrm{Js}$	
$E_{n}^{H-\text { atom }}=-\frac{R_{H} h c}{n^{2}}$	$\mathrm{PO}_{4}{ }^{3-}$	CN^{-}	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	$c=2.9998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	$\mathrm{NO}_{2}{ }^{-}$	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$	$N=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{SO}_{4}{ }^{2-}$	$R_{H}=1.097 \times 10^{7} \mathrm{~m}^{-1}$		

1A	2A	3B	4B	5B	6B	7B	8B	8B	8B	1 B	2B	3A	4A	5A	6A	7A	8A
$\begin{array}{\|l\|l} \hline 1 \\ \mathbf{H} \\ 1.008 \\ \hline \end{array}$																	$\begin{aligned} & \stackrel{2}{\mathrm{He}} \end{aligned}$ 4.003
$\begin{aligned} & \mathbf{3} \\ & \mathbf{L i} \end{aligned}$ $\begin{array}{\|c} 6.939 \\ \hline \end{array}$	Be 9.012											$\begin{array}{\|c\|} \hline 5 \\ \mathbf{B} \\ 10.81 \\ \hline \end{array}$	${ }^{6} \mathrm{C}$ 12.01	$\begin{gathered} 7 \\ \mathbf{N} \\ \hline 14.01 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8 \\ & \mathbf{0} \end{aligned}$ 16.00	9 19.00	$\stackrel{10}{\mathrm{Ne}}$ 20.18
$\begin{array}{\|l\|} \hline 11 \\ \mathbf{N a} \\ \hline 22.99 \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ \mathbf{M g} \\ \hline 24.31 \\ \hline \end{array}$											$\begin{aligned} & 13 \\ & \text { Al } \\ & 26.98 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{1 4} \\ & \mathbf{S i} \\ & \mathbf{L i}^{28.09} \end{aligned}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.07 \end{gathered}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \\ & 35.45 \end{aligned}$	18 Ar 39.95
19 K \qquad	20 Ca 40.08	$\begin{aligned} & \begin{array}{l} 21 \\ \mathrm{Sc} \\ 44.96 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & \mathbf{T i} \\ & 47.90 \\ & \hline \end{aligned}$	$\begin{aligned} & { }_{23} \\ & \mathbf{V} \\ & 50.94 \\ & 5 \end{aligned}$	$\begin{aligned} & { }^{24} \mathbf{C r} \\ & 52.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 25 \\ \mathbf{M n} \\ 5_{454} \end{array}$	26 Fe 55.85	$\begin{array}{\|l} 27 \\ \text { Co } \\ \hline 5,93 \end{array}$	$\begin{aligned} & \hline 28 \\ & \mathbf{N i} \\ & \mathbf{N i} \\ & 58.71 \end{aligned}$	$\begin{aligned} & { }^{29} \\ & \mathbf{C u} \\ & 6.35 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 30 \\ \mathbf{Z n} \\ 6.59 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{31} \\ & \mathbf{G a} \\ & 69.72 \end{aligned}$	$\begin{aligned} & 32 \\ & \mathbf{G e} \\ & 72.61 \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \\ & 74.92 \end{aligned}$	$\begin{aligned} & \stackrel{34}{34} \\ & \mathbf{S e} \end{aligned}$ 78.96	$\begin{aligned} & \hline 35 \\ & \mathbf{B r} \\ & 79.90 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 36 \\ \mathbf{K r} \\ 83.80 \end{array} \\ & \hline \end{aligned}$
$\begin{array}{\|l} \hline 37 \\ \mathbf{R b} \end{array}$ 85.47	38 Sr \qquad	$\begin{gathered} \hline 39 \\ \mathbf{Y} \\ \mathbf{Y 8 . 9 1} \\ \hline \end{gathered}$	40 Zr 91.22	$\begin{aligned} & \hline{ }^{41} \\ & \mathrm{Nb} \end{aligned}$ 92.91	$\begin{aligned} & 42 \\ & \mathbf{M o} \end{aligned}$ 95.94	$\begin{aligned} & \hline \begin{array}{l} 43 \\ \text { Tc } \\ (99) \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l} 44 \\ \mathbf{R u} \end{array}$ 101.1	$\begin{aligned} & \hline 45 \\ & \mathbf{R h} \\ & 1029 \\ & \hline \end{aligned}$	46 Pd 106.4	$\begin{aligned} & { }^{47} \\ & \mathbf{A g} \\ & 107.9 \end{aligned}$	$\begin{aligned} & \hline \stackrel{48}{\mathrm{Cd}} \\ & \hline \end{aligned}$ 112.4	$\begin{aligned} & 49 \\ & \text { In } \\ & 114.8 \end{aligned}$		51 Sb 121.8	52 Te 127.6	$\begin{gathered} 53 \\ \text { I } \\ 126.9 \end{gathered}$	$\stackrel{54}{\mathrm{X}}$ 131.3
${ }^{55}$ 132.9	${ }^{56} \mathrm{Ba}$ 137.3	$\begin{aligned} & 57 \\ & \mathbf{L a} \\ & \text { La } \\ & \text { 138.9 } \end{aligned}$	$\begin{aligned} & { }^{72} \\ & \mathbf{H f} \end{aligned}$ 178.5	$\begin{array}{\|l\|} \hline 73 \\ \mathbf{T a} \\ 181.0 \\ \hline \end{array}$	$\begin{gathered} 74 \\ \mathbf{W} \end{gathered}$ 183.8	75 Re 186.2	$\stackrel{76}{\mathrm{O}}$ 190.2	$\begin{array}{\|l\|} \hline 77 \\ \mathbf{I r} \\ 192.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 78 \\ \mathbf{P t} \\ \hline 195.1 \\ \hline \end{array}$	79 Au 197.0	$\begin{array}{\|l\|} \hline 80 \\ \mathbf{H g} \\ \hline 200.6 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 81 \\ \mathbf{T l} \\ 204.4 \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} 82 \\ \mathbf{P b} \\ 207.2 \end{array} \\ & \hline \end{aligned}$	83 Bi 2009	$\begin{aligned} & \begin{array}{l} 84 \\ \text { Po } \\ \text { (209) } \end{array} \\ & \hline \end{aligned}$	85 At (210)	86 Rn (222)
$\stackrel{87}{\mathrm{Fr}}$ (223)	88 Ra 226.0	89 Ac 227.0	104 Unq (261)	$\begin{aligned} & \hline 105 \\ & \text { Unp } \\ & (262) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 106 \\ \text { Unh } \\ (263) \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 107 \\ \text { Uns } \\ (262) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} 108 \\ \text { Uno } \end{array} \\ \hline(265) \end{array}$	$\begin{array}{\|l\|} \hline 109 \\ \text { Une } \end{array}$ (266)	a								

\qquad Answer Key - Exam Version E

Solubility Rules for some ionic compounds in water

Soluble Ionic Compounds

1. All sodium $\left(\mathrm{Na}^{+}\right)$, potassium $\left(\mathrm{K}^{+}\right)$, and ammonium $\left(\mathrm{NH}_{4}^{+}\right)$salts are SOLUBLE.
2. All nitrate $\left(\mathrm{NO}_{3}^{-}\right)$, acetate $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right)$, chlorate $\left(\mathrm{ClO}_{3}^{-}\right)$, and perchlorate $\left(\mathrm{ClO}_{4}^{-}\right)$salts are SOLUBLE.
3. All chloride $\left(\mathrm{Cl}^{-}\right)$, bromide $\left(\mathrm{Br}^{-}\right)$, and iodide $\left(\mathrm{I}^{-}\right)$salts are SOLUBLE -- EXCEPT those also containing: lead, silver, or mercury (I) $\left(\mathrm{Pb}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}^{2+}\right)$ which are NOT soluble.
4. All sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ salts are SOLUBLE - - EXCEPT those also containing: calcium, silver, mercury (I), strontium, barium, or lead $\left(\mathrm{Ca}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}\right)$ which are NOT soluble.

Not Soluble Ionic Compounds

5. Hydroxide $\left(\mathrm{OH}^{-}\right)$and oxide $\left(\mathrm{O}^{2-}\right)$ compounds are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or barium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ba}^{2+}\right)$ which are soluble.
6. Sulfide (S^{2-}) salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, ammonium, or barium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}\right.$, $\mathrm{NH}_{4}{ }^{+}, \mathrm{Ba}^{2+}$) which are soluble.
7. Carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or ammonium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}\right)$, which are soluble.

Identify the choice that best completes the statement or answers the question.

1. What is the hybridization of the central nitrogen atom in nitrite ion, NO_{2}^{-}?
a. $s p$
b. $s p^{2}$
c. $s p^{3}$
d. $s p^{3} d$
e. $s p^{3} d^{2}$

ANS: B TOP: 9.2 Valence Bond Theory

2. For which of the following molecules does the central carbon atom have $s p^{2}$ hybridization?
a. $\mathrm{Cl}_{2} \mathrm{CO}$
b. CHCl_{3}
c. CS_{2}
d. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
e. HCN

ANS: A TOP: 9.2 Valence Bond Theory
3. What is the molecular geometry around a central atom that is $s p^{2}$ hybridized, has three sigma bonds, and one pi bond?
a. trigonal-planar
d. T-shaped
b. trigonal-pyramidal
e. tetrahedral
c. bent

ANS: A TOP: 9.2 Valence Bond Theory

4. Which of the following characteristics apply to SO_{2} ?
5. polar bonds
6. nonpolar molecule
7. linear molecular shape
8. $s p$ hybridized
a. 1 only
d. 1, 2, and 3
b. 1 and 2
e. $1,2,3$, and 4
c. 3 and 4

ANS: A TOP: 9.2 Valence Bond Theory
\qquad Answer Key - Exam Version E
5. A molecular orbital that decreases the electron density between two nuclei is said to be .
a. hybridized
c. antibonding
e. nonpolar
b. bonding
d. pi-bonding

ANS: C TOP: 9.3 Molecular Orbital Theory
6. The following valence molecular orbital energy level diagram is appropriate for which one of the listed species?

a. $\quad \mathrm{B}_{2}{ }^{2-}$
b. $\mathrm{C}_{2}{ }^{2-}$
c. $\mathrm{N}_{2}{ }^{2-}$
d. $\mathrm{O}_{2}{ }^{2-}$
e. $\mathrm{F}_{2}{ }^{2-}$

ANS: C TOP: 9.3 Molecular Orbital Theory
7.

Which picture best represents the electronic distribution in orbital " g "?
a.

c.

e.

b.

d.

ANS: D
8. The diatomic AB above is CN^{-}. What is the overall bond order?
a. 1.0
b. 1.5
c. 2.0
d. 2.5
e. 3.0

ANS: E
\qquad
9. The picture at right depicts which type of orbital hybridization?
a. sp
b. sp^{2}
c. sp^{3}
d. $\mathrm{sp}^{3} \mathrm{~d}$
e. $\mathrm{sp}^{3} \mathrm{~d}^{2}$

ANS: A
10. In the molecule 2-pentenoic acid, which most closely measures the $\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{H}$ angle?

a. 90°
b. 109°
c. 120°
d. 145°
e. 180°

ANS: B
11. Each carbon atom in $\mathrm{CH}_{3} \mathrm{CH}_{3}$ requires what type of orbital hybridization?
a. sp
c. sp^{3}
e. no hybridization
b. sp^{2}
d. sp^{4}

ANS: C
12. An alcohol will initially react with the molecule below at which position?

ANS: D
13. Which carbon center below is most deficient in electrons?

ANS: B
\qquad Answer Key - Exam Version E
14. Which of the following statements is/are correct?

1. Water soluble ionic compounds, such as NaCl , are strong electrolytes.
2. Some molecular compounds, such as HCl , are strong electrolytes.
3. Some molecular compounds, such as acetic acid, are weak electrolytes.
a. 1 only
c. 3 only
e. 1, 2, and 3
b. 2 only
d. 1 and 2

ANS: E TOP: 3.5 lons and Molecules in Aqueous Solutions
15. Which one of the following compounds is a nonelectrolyte when dissolved in water?
a. KI
c. MgCl_{2}
e. F_{2}
b. MgBr_{2}
d. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$

ANS: E TOP: 3.5 lons and Molecules in Aqueous Solutions
16. A precipitate will form when aqueous $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is added to an aqueous solution of
a. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
b. NaNO_{3}
c. $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$
d. $\mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}$
e. CaBr_{2}

ANS: E TOP: 3.6 Precipitation Reactions
17. Formic acid, $\mathrm{HCO}_{2} \mathrm{H}$, is a weak acid. Write a net ionic equation for the reaction of aqueous formic acid and aqueous potassium hydroxide.
a. $\quad \mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{HCO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}\left({ }^{\top}\right)^{\top}$
b. $\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightarrow \mathrm{HCO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}()^{\top}{ }^{\mathrm{M}}$
c. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}\left({ }^{\top}\right)^{\top}$
d. $\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{HCO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}\left({ }^{\text {TN }}\right)$
e. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}\left(^{\top}\right)^{\top}$

ANS: D TOP: 3.7 Acids and Bases

18. Write a balanced chemical equation for the reaction of aqueous solutions of potassium sulfide and nitric acid.
a. $\quad \mathrm{K}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{KH}(\mathrm{aq})+\mathrm{S}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~g})$
b. $\mathrm{K}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{HS}(\mathrm{g})+\mathrm{K}_{2} \mathrm{NO}_{3}(\mathrm{aq})$
c. $\mathrm{K}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
d. $\mathrm{K}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{~K}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~g})$
e. $\mathrm{K}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{KNO}_{3}(\mathrm{aq})$

ANS: E TOP: 3.8 Gas-Forming Reactions

19. Which species is oxidized in the reaction below?

$$
\mathrm{I}^{-}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq}) \rightarrow \mathrm{IO}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

a. ClO^{-}
c. I^{-}
e. none
b. $\mathrm{H}_{2} \mathrm{O}$
d. IO^{-}

ANS: C TOP: 3.9 Oxidation-Reduction Reactions

\qquad Answer Key - Exam Version E
20. What is the oxidation number of iodine in potassium periodate, KIO_{4} ?
a. -1
b. 0
c. +3
d. +5
e. +7

ANS: E TOP: 3.9 Oxidation-Reduction Reactions

21. Consider the reaction

$$
\mathrm{FeCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

This reaction is best classified as
a. oxidation-reduction
d. acid-base
b. gas-evolving
e. gas-evolving and acid-base
c. precipitation

ANS: E
22. Alka seltzer is a combination of citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$, and $\mathrm{NaHCO}_{3}{ }^{-}$. They react in your glass to form $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}, \mathrm{H}_{2} \mathrm{O}$, and CO .

What is the oxidation number of the carbon pointed to by the arrow?
a. 4
b. 3
c. 2
d. 1
e. 0

ANS:
23. Mixing $\mathbf{N a}_{2} \mathbf{S}$ with $\mathbf{B a C l}_{\mathbf{2}}$ in water leads to precipitation of
a. $\mathrm{a} \mathrm{Cl}^{-}$salt
d. nothing precipitates
b. aBa^{2+} salt
e. everything precipitates
c. $\mathrm{a} \mathrm{Na}^{+}$salt

ANS: D
24. What is the oxidation number of chromium in $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$?
a. +2
b. +4
c. +5
d. +6
e. +7

ANS: D
25. What course is this?
a) Bio 152
c) Sports 01
e) Chem 111
b) Election 08
d) Math 3.14159
ANS: E

