\qquad Answer Key - Exam Version B

> * Enter your answers on the reverse. *

This exam is composed of $\mathbf{5}$ questions on the reverse.
Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you.

As discussed in the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

I hereby state that all answers on this exam are my own and that I have neither gained unfairly from others nor have I assisted others in obtaining an unfair advantage on this exam.

Signature

$E=h v=\frac{h c}{\lambda}$	Some common ions:		$h=6.626 \times 10^{-34} \mathrm{Js}$	
$E_{n}^{H-\text { atom }}=-\frac{R_{H} h c}{n^{2}}$	$\mathrm{PO}_{4}{ }^{3-}$	CN^{-}	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	$c=2.9998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	$\mathrm{NO}_{2}{ }^{-}$	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$	$N=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{SO}_{4}{ }^{2-}$	$R_{H}=1.097 \times 10^{7} \mathrm{~m}^{-1}$		

1A	2A	3B	4B	5B	6B	7B	8B	8B	8B	1 B	2 B	3A	4A	5A	6A	7A	8A
$\begin{array}{\|l\|l} \hline 1 \\ \mathbf{H} \\ 1.008 \\ \hline \end{array}$																	$\stackrel{2}{\mathrm{He}}$ 4.003
$\begin{aligned} & \mathbf{3} \\ & \mathbf{L i} \end{aligned}$ $\begin{array}{\|c} 6.939 \\ \hline \end{array}$	Be 9.012											$\begin{array}{\|l} \hline 5 \\ B \end{array}$ $\begin{gathered} 10.81 \\ \hline \end{gathered}$	${ }^{6} \mathrm{C}$ 12.01	$\begin{gathered} 7 \\ \mathbf{N} \\ \hline 14.01 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8 \\ & \mathbf{0} \end{aligned}$ 16.00	9 19.00	$\stackrel{10}{\mathrm{Ne}}$ 20.18
$\begin{array}{\|l\|} \hline 11 \\ \mathbf{N a} \\ \hline 22.99 \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ \mathbf{M g} \\ \hline 24.31 \\ \hline \end{array}$											$\begin{array}{\|l\|} \hline 13 \\ \text { Al } \\ 26.98 \\ \hline \end{array}$	$\begin{aligned} & \mathbf{1 4} \\ & \mathbf{S i} \\ & \mathbf{L i}^{28.09} \end{aligned}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.07 \end{gathered}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \\ & 35.45 \end{aligned}$	18 Ar 39.95
19 K \qquad	20 Ca 40.08	$\begin{aligned} & \begin{array}{l} 21 \\ \mathrm{Sc} \\ 44.96 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & \mathbf{T i} \\ & 47.90 \\ & \hline \end{aligned}$	$\begin{aligned} & { }_{23} \\ & \mathbf{V} \\ & 50.94 \\ & 5 \end{aligned}$	$\begin{aligned} & { }^{24} \mathbf{C r} \\ & 52.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 25 \\ \mathbf{M n} \\ 5_{454} \end{array}$	26 Fe 55.85	$\begin{array}{\|l} 27 \\ \text { Co } \\ \hline 5,93 \end{array}$	$\begin{array}{\|l\|} \hline 28 \\ \mathbf{N i} \\ 58.71 \\ 58 \end{array}$	$\begin{aligned} & { }^{29} \\ & \mathbf{C u} \\ & 6.35 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 30 \\ \mathbf{Z n} \\ 6.59 \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 31 \\ \mathbf{G a} \\ 69.72 \\ \hline \end{array}$	$\begin{aligned} & 32 \\ & \mathbf{G e} \\ & 72.61 \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \\ & 74.92 \end{aligned}$	$\begin{aligned} & \stackrel{34}{34} \\ & \mathbf{S e} \end{aligned}$ 78.96	$\begin{aligned} & \hline 35 \\ & \mathbf{B r} \\ & 79.90 \end{aligned}$	$\begin{gathered} \begin{array}{c} 36 \\ \mathbf{K r} \\ 83.80 \end{array} \\ \hline \end{gathered}$
$\begin{array}{\|l} \hline 37 \\ \mathbf{R b} \end{array}$ 85.47	38 Sr \qquad	$\begin{gathered} \hline 39 \\ \mathbf{Y} \\ \mathbf{Y 8 . 9 1} \\ \hline \end{gathered}$	40 Zr 91.22	$\begin{aligned} & \hline{ }^{41} \\ & \mathrm{Nb} \end{aligned}$ 92.91	$\begin{aligned} & 42 \\ & \mathbf{M o} \end{aligned}$ 95.94	$\begin{aligned} & \hline \begin{array}{l} 43 \\ \text { Tc } \\ (99) \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l} 44 \\ \mathbf{R u} \end{array}$ 101.1	$\begin{aligned} & \hline 45 \\ & \mathbf{R h} \\ & 1029 \\ & \hline \end{aligned}$	46 Pd 106.4	$\begin{aligned} & { }^{47} \\ & \mathbf{A g} \\ & 107.9 \end{aligned}$	$\begin{aligned} & \hline \stackrel{48}{\mathrm{Cd}} \\ & \hline \end{aligned}$ 112.4	49 In 114.8		51 Sb 121.8	52 Te 127.6	$\begin{gathered} 53 \\ \text { I } \\ 126.9 \end{gathered}$	$\stackrel{54}{\mathrm{X}}$ 131.3
${ }^{55}$ 132.9	56 Ba 137.3	$\begin{aligned} & 57 \\ & \mathbf{L a} \\ & \text { La } \\ & \text { 138.9 } \end{aligned}$	$\begin{aligned} & { }^{72} \\ & \mathbf{H f} \end{aligned}$ 178.5	$\begin{array}{\|l\|} \hline 73 \\ \mathbf{T a} \\ 181.0 \\ \hline \end{array}$	$\begin{gathered} 74 \\ \mathbf{W} \end{gathered}$ 183.8	75 Re 186.2	$\stackrel{76}{\mathrm{O}}$ 190.2	$\begin{array}{\|l\|} \hline 77 \\ \mathbf{I r} \\ 192.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 78 \\ \mathbf{P t} \\ \hline 195.1 \\ \hline \end{array}$	79 Au 197.0	$\begin{array}{\|l\|} \hline 80 \\ \mathbf{H g} \\ \hline 200.6 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \mathbf{8 1} \\ \mathbf{T l} \\ 204.4 \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} 82 \\ \mathbf{P b} \\ 207.2 \end{array} \\ & \hline \end{aligned}$	83 Bi 2009	$\begin{aligned} & \begin{array}{l} 84 \\ \text { Po } \\ \text { (209) } \end{array} \\ & \hline \end{aligned}$	85 At (210)	86 $\mathbf{R n}$ (222)
$\stackrel{87}{\mathrm{Fr}}$ (223)	88 Ra 226.0	89 Ac 227.0	104 Unq (261)	$\begin{aligned} & \hline 105 \\ & \text { Unp } \\ & (262) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 106 \\ \text { Unh } \\ (263) \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 107 \\ \text { Uns } \\ (262) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} 108 \\ \text { Uno } \end{array} \\ \hline(265) \end{array}$	$\begin{array}{\|l\|} \hline 109 \\ \text { Une } \end{array}$ (266)	e								

\qquad Answer Key - Exam Version B

Very clearly write the answer in the box choice that best completes the statement or answers the question.

1. Which of the following characteristics apply to SiO_{2} ? (this is not the molecule from Monday!)
2. polar bonds
3. nonpolar molecule
4. linear molecular shape
5. $s p$ hybridized
a. 1 only
d. 1, 2, 3, and 4
b. 1 and 2
e. 1,2 , and 3
c. 3 and 4

ANS: D TOP: 9.2 Valence Bond Theory

2. Which one of the following compounds is a nonelectrolyte when dissolved in water?
a. HCl
b. MgBr_{2}
c. KI
d. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
e. O_{2}

ANS: E TOP: 3.5 lons and Molecules in Aqueous Solutions
3. Write a balanced net ionic equation for the reaction of aqueous solutions of baking soda $\left(\mathrm{NaHCO}_{3}\right)$ and acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$.
a. $\mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{Na}^{+}(\mathrm{aq})$
b. $2 \mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{CH}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}\left({ }^{\text {TN }}\right)^{2}+\mathrm{CO}_{2}(\mathrm{~g})$
c. $\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}\left(^{\top}\right)^{\top}+\mathrm{CO}_{2}(\mathrm{~g})$
d. $\left.\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}^{\mathrm{T}}\right)^{\mathrm{T}}+\mathrm{CO}_{2}(\mathrm{~g})$
e. $\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$

ANS: C or D TOP: 3.8 Gas-Forming Reactions
OK - you got me. The book is correct that C is the right answer, but I said D in class today, so I'll take either as correct. Here's the story. I fully separated the acetic acid, treating it as a strong acid (which it is not). An analogy here: if one side has an insoluble species, we write it as the insoluble (s) species in the equation. You're probably all comfortable with that. Weak acids should be treated similarly, and so should show up on one side as the undissociated acid form (in this case $\mathbf{C H}_{3} \mathrm{CO}_{2} \mathbf{H}$). Sorry for the confusion. My mistake - you win.
For this question on some versions of Evening Exam 3, I will keep grading as is. In other words, the weak acid should be presented in its undissociated form.
4. What is the molecular geometry around a central atom that is $s p^{3} d$ hybridized and has one lone pair of eletrons?
a. trigonal bipyramidal
d. tetrahedral
b. trigonal-pyramidal
e. square-planar
c. see-saw

ANS: C TOP: 9.2 Valence Bond Theory
\qquad 5. Which carbon center below is most deficient in electrons?

ANS: D

