Chem 111 Exam #3 Bonus Points

Name: _____ Answer Key – Exam Version B

* Enter your answers on the reverse. *

This exam is composed of **5 questions** on the reverse.

Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you.

As discussed in the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

I hereby state that all answers on this exam are my own and that I have neither gained unfairly from others nor have I assisted others in obtaining an unfair advantage on this exam.

Signature

$E = hv = \frac{hc}{\lambda}$ $E_n^{H-atom} = -\frac{R_H hc}{2}$	PO ₄ ³⁻ CN ⁻ CH ₃ CO ₂ ⁻	$h = 6.626x10^{-34} J s$ $c = 2.9998x10^8 m s^{-1}$		
$E_n = -\frac{n}{n^2}$		$N = 6.022x10^{23} \ mol^{-1}$		
$1 \text{ mL} = 1 \text{ cm}^3$	SO ₃ ²⁻ SO ₄ ²⁻	$R_H = 1.097 x 10^7 \ m^{-1}$		

PERIODIC TABLE OF THE ELEMENTS

1A	2A	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	3A	4A	5A	6 A	7 A	8A
1																	2
H																	He
1.008		1												1_		T	4.003
3 Li	Be											5 B	6 C	7 N	8	9 F	Ne
6.939	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19 K	ca Ca	Sc Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Z n	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.71	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37 Rb	38 Sr	39 Y	40 Z r	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
85.47	87.62	88.91	91.22	92.91	95.94	(99)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 R n
132.9	137.3	138.9	178.5	181.0	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87 Fr	88 Ra	89 Ac	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une									
(223)	226.0	227.0	(261)	(262)	(263)	(262)	(265)	(266)	е								

Che	m 1	11 Exan	n #3 B	onus Points	S Nam	ne:	Answer Key – Exam Version B
Very	clear	ly write th	e answei	r in the box cho	oice that best	completes	the statement or answers the question.
] 1.	Wł	nich of the	follow	ing characteri	stics apply to	o SiO ₂ ? (tl	his is not the molecule from Monday!)
		 pola non line 	r bonds polar mo	olecule ular shape			
		1 only 1 and 2 3 and 4				1, 2, 3, a 1, 2, and	
		ANS:	D	TOP: 9.2	Valence B	ond The	eory
] _{2.}	Wł	nich one o	f the fol	llowing comp	ounds is a n e	onelectro	olyte when dissolved in water?
		HCl MgBr ₂			KI $Zn(NO_3)_2$		e. O ₂
		ANS:	E	TOP: 3.5	lons and N	/lolecule	es in Aqueous Solutions
	c. d.	HCO ₃ ⁻ (aq HCO ₃ ⁻ (aq	$(1) + CH_3$ $(1) + H^+(a)$	$CH_3CO_2H(aq) \rightarrow CO_2H(aq) \rightarrow Cq) \rightarrow H_2O(^{\mathbb{N}}) + q) \rightarrow H_2CO_3(aq)$	$CH_3CO_2^-(aq) - CO_2(g)$	_	$A(aq) + 2H_2O(^{\mathbb{M}}) + CO_2(g)$ - $CO_2(g)$
	Oktod tre ins pro sho Son For	ANS: \(- \text{you go} \) \(\text{lay, so I'l} \) ating it as oluble spobably allowed show rry for the other this queen.	C or ot me. T I take e s a stro ecies, w I comfo up on e confu	D TOP The book is continuous acid (whice write it as to the residual acid) The with the continuous acid as the side as the side as the side acid. My mission. My mission were side acid.	P: 3.8 Gas orrect that (ect. Here's t ch it is not). the insoluble nat. Weak a ne undissoci- take – you vons of Eveni	C is the ri he story. An analo e (s) spec cids shou ated acid win. ng Exam	ig Reactions ight answer, but I said D in class I fully separated the acetic acid, ogy here: if one side has an cies in the equation. You're ald be treated similarly, and so I form (in this case CH ₃ CO ₂ H). 13, I will keep grading as is. In as undissociated form.
4.	Wł	nat is the r	nolecul	ar geometry a	around a cen	tral atom	that is sp^3d hybridized and has
		e lone pain trigonal b trigonal-p see-saw	of eleti	rons? lal	d. e.	tetrahedi square-p	ral
		ANS:	С	TOP: 9.2	Valence B	ond The	eory

Chem	111	Exam	#3	Bonus	Points

Name: _____Answer Key - Exam Version B

5. Which carbon center below is most deficient in electrons?

$$b$$
 c d e

ANS: D