Why write electrons in 4 pairs?

Why write electrons in 4 pairs?

 $[He]2s^22p^5$

[He] $2s^22p_x^22p_y^22p_z^1$

Why write electrons in 4 pairs?

 $[He]2s^22p^5$

[He]
$$2s^{2}2p_{x}^{2}2p_{y}^{2}2p_{z}^{1}$$

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- 2. Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- 2. Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

H – terminal

C – internal
Up to 4 bonds

O – internal?

Up to 2 bonds

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

H – terminal

C – internal
Up to 4 bonds

O – internal?

Up to 2 bonds

So try C in middle

H∙ ∙Ċ• ∙Ö∙

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

 $H - 1s^{1}$

 $H - 1s^{1}$

 $C - [He]2s^22p^2$

 $O - [He]2s^22p^4$

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

12 e⁻

н С С

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO 12 e⁻

 $H \cdot \cdot C \quad C$

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO 12 e

H**⊶**C C

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO 12 e⁻

 $H \rightarrow C \rightarrow O$

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

Drawing Lewis Structures The Octet Rule Slightly alternate route

Slightly alternate route

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

Slightly alternate route

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

Slightly alternate route

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

Slightly alternate route

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

Slightly alternate route

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

Slightly alternate route

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- 2. Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

Slightly alternate route

- 1. Determine the arrangement of atoms in the molecule
 - Some elements work only as terminal atoms (H, F, Cl, etc)
 - Some are particularly good as internal atoms (C, N)
- Determine the total number of valence electrons in all atoms (don't forget charge!)
 - Add numbers of all valence electrons
 - If negatively charged, add the appropriate number of electrons
 - If positively charged, subtract the appropriate number of electrons
- 3. Place one pair of electrons between each pair of bonded atoms, forming a bond
- 4. Use remaining electron pairs as lone pairs around each terminal atom, to complete its octet
- 5. Place electrons around the central atom. If you run out, "share" electron pairs from terminal atoms

H₂CO

• • • • • • • • •

N N

: N ≡ N :

Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

.; 0=c=; 1

Octet of electrons around the C atom (four in each of two double bonds)

• • • • • • •

 $N \cdot \cdot N$

: N≡N:

Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

<u>0</u>=c=0

Octet of electrons around the C atom (four in each of two double bonds)

• • • • • • •

 $N \longrightarrow N$

: N≡N:

Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

<u>0</u>=c=0

Octet of electrons around the C atom (four in each of two double bonds)

:N ← N

: N≡N:

Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

<u>0</u>=c=0

Octet of electrons around the C atom (four in each of two double bonds)

:N ← N

: N≡N :

Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

<u>0</u>=c=0

Octet of electrons around the C atom (four in each of two double bonds)

:N ← N:

: N≡N :

Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

<u>0</u>=c=0

Octet of electrons around the C atom (four in each of two double bonds)

:N≡N:

Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

<u>0</u>=c=0

Octet of electrons around the C atom (four in each of two double bonds)

: N≡N :

Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

<u>0</u>=c=0

Octet of electrons around the C atom (four in each of two double bonds)

: N≡N:

Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

<u>0</u>=c=0

Octet of electrons around the C atom (four in each of two double bonds)

:N≡N:

Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

<u>0</u>=c=0

Octet of electrons around the C atom (four in each of two double bonds)

: N≡N:

Octet of electrons around each N atom (six in triple bond and two in lone pair)

Octet of electrons around each O atom (four in double bond and four in lone pairs)

<u>0</u>=c=0

Octet of electrons around the C atom (four in each of two double bonds)

double bonds and satisfy
$$\begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \ddots & \vdots \end{bmatrix} + \text{ the octet for N.}$$

Move lone pairs to create

 $\begin{bmatrix} \vdots & & \vdots \\ 0 & - & 0 \\ \vdots & & \end{bmatrix}^+$

- 1) :C = 0:
- 2) :C = 0:
- 3) :C == 0:

Isoelectronic species (10 electrons)

$$N - [He]2s^22p^3$$

 $N - [He]2s^22p^3$

$$O - [He]2s^22p^4$$

 $C - [He]2s^22p^2$

Plus 1 e⁻

TABLE 8.3 Lewis Structures of Common Hydrogen-Containing Molecules and Ions of Second-Period Elements

Group 4A		Group 5A		Group 6A		Group 7A	
	H—C—H	NH ₃ ammonia	H—N—H H	H₂0 water	н— <u>ö</u> —н	HF hydrogen fluoride	H—Ë:
C ₂ H ₆ ethane	H H H—C—C—H I I H H	N ₂ H ₄ hydrazine	H—N—N—H H H	H ₂ O ₂ hydrogen peroxide	н— <u>;;—;;</u> —н		
				H₃0 ⁺ hydronium ion	_		
C ₂ H ₂ acetylene	н—с≡с—н	NH ₂ ⁻ amide ion	$\begin{bmatrix} H-\ddot{N}-H \end{bmatrix}$	0H ⁻ hydroxide ion	$\begin{bmatrix} \vdots \ddot{0} - H \end{bmatrix}_{-}$		

[@] Brooks/Cole, Cengage Learning

Start to think about the common elements like this

