New concept

New concept

Formal Charge

Covalent assumption

Electrons shared, one to each

New concept

Formal Charge

Covalent assumption

Electrons shared, one to each

Oxidation Number

Ionic assumption

Both electrons transferred to the one who wants them more

Formal charge
$$= -1 = 6 - [6 + \frac{1}{2}(2)]$$

$$\begin{bmatrix} \vdots \\ 0 \\ \end{bmatrix} - Sum \ of \ formal \ charges = -1 \\ Formal \ charge = 0 = 1 - [0 + \frac{1}{2}(2)] \\ Assume \ an ionic \ bond$$

- Octet Rule double count shared electrons
 - assumes both atoms get both electrons

- Octet Rule double count shared electrons
 - assumes both atoms get both electrons
- Formal Charge Evenly split electrons in a bond
 - one to one atom, one to the other

- Octet Rule double count shared electrons
 - assumes both atoms get both electrons
- Formal Charge Evenly split electrons in a bond
 - one to one atom, one to the other
- Oxidation Number Unevenly split electrons in a bond
 - the atom that wants electrons more, gets both shared electrons (as in ionic bonds). The other one loses out. An extreme view.

Back to Octet Rule

Ozone molecule O₃

Alternative Ways of Drawing the Ozone Structure

Double bond on the left:

$$0 = 0 - 0$$

Double bond on the right: 0 - 0 = 0

Ozone molecule O₃

Alternative Ways of Drawing the Ozone Structure

Double bond on the left:
$$0=0-0$$

Double bond on the right:
$$0 - 0 = 0$$

@ Brooks/Cole, Cengage Learning

Which side gets the double bond?

Real molecule - equal bond lengths!! (not interconverting)

Nitrite anion - NO₂

Formal charge = Formal charge =
$$0 = 6 - \left[4 + \frac{1}{2}(4)\right] \qquad -1 = 6 - \left[6 + \frac{1}{2}(2)\right]$$

$$\begin{bmatrix} \vdots \\ 0 = N - 0 \end{bmatrix}$$
Formal charge =
$$0 = 5 - \left[2 + \frac{1}{2}(6)\right]$$

Nitrite anion - NO₂

Resonance Structure - two views; neither fully correct

$$\begin{bmatrix} : 0 = N - 0 : \end{bmatrix}^{-} \longleftrightarrow \begin{bmatrix} : 0 - N = 0 : \end{bmatrix}^{-}$$

Nitrite anion - NO₂-

Unified Structure - one view; more correct

Resonance Structure - two views; neither fully correct

$$\begin{bmatrix} : 0 = N - 0 : \end{bmatrix}^{-} \longleftrightarrow \begin{bmatrix} : 0 - N = 0 : \end{bmatrix}^{-}$$

Nitrite anion - NO₂-

Unified Structure - one view; more correct

Resonance Structure - two views; neither fully correct

$$\begin{bmatrix} : 0 = N - 0 : \end{bmatrix}^{-} \longleftrightarrow \begin{bmatrix} : 0 - N = 0 : \end{bmatrix}^{-}$$

Exceeding the Octet Rule

using near-energy d orbitals

(5x7) + 1 = 36 electrons brought to the party

@ Brooks/Cole, Cengage Learning

p. 364

TABLE 8.6 Lewis Structures in Which the Central Atom Exceeds an Octet

Group 4A	Group 5A	Group 6A	Group 7A	Group 8
SiF ₅	PF ₅	SF ₄	ClF ₃	XeF ₂
:F: :F—Si :: :F: :F:	: F: : F: : F:	: F: : —S ::: F: :F:	:	: — Xe : : : : : : : : : : : : : : : : : :
SiF ₆ ²⁻ [:F:] ²⁻ Si F: F::F:	PF ₆ : F:] F: F: F: F: F: F: F: F:	SF ₆ : F: : F: : F:	BrF₅ : F: : F	XeF ₄ : F

[@] Brooks/Cole, Cengage Learning